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On the Viability and Performance of DNS
Tunneling

Tom van Leijenhorst, Kwan-Wu Chin and Darryn Lowe

Abstract— DNS tunnels are network covert channels
that allow the transmission of arbitrary data using the DNS
infrastructure. Users can use such tunnels to hide their
communication sessions in order to bypass local security
and accounting policies. Hence, it is important that we
investigate the viability and performance of DNS tunneling.
Our results show that clients can obtain up to 110 KB/s
in throughput, and delays as low as 150ms. These results,
however, incur very high overheads. In the worst case,
clients generate up to 2000% more traffic!

Index Terms— Domain Name System, DNS, Tunneling,
Covert Channels

I. INTRODUCTION

Covert channels allow processes to transfer informa-
tion in a way that violates a system’s security policies
[2]. These channels do so without raising any alarms;
i.e., they function within the specifications of the system
they are operating in. As such, they cannot be seen as
exploits, as they do not abuse vulnerabilities, but rather
use a system to transmit information in a novel way. An
example covert channel involves hiding data in the least
significant bits of each pixel of a bitmap image. The
image looks like the original and is technically indis-
tinguishable. This implementation exemplifies a storage
covert channel; a means of transmitting information
between two processes by having one process directly
or indirectly write to a storage location, which is then
read by a second process [9]. Another type of covert
channels concerns the exchange of data between two
processes that alter and observe the timing of system
resources [9], so called covert timing channels. A simple
implementation involves a sending process executing two
commands: one that takes a few seconds to complete
and another that takes 20 seconds. A receiving process
then interprets the former as binary “0”and the later as
binary “1”. When covert channels are established be-
tween processes on different machines, we refer to them
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as network covert channels [13]. Often, network covert
channels are used to bypass firewalls. This, however, is
not the only reason for using them. Other applications
include data hiding for confidentiality (see steganography
[8][3]), anonymity or to counter censorship; e.g., to
bypass proxies that block certain websites.

This paper studies domain name system (DNS) tun-
nels, a realization of network covert channels. Thus
far, research into DNS tunneling is limited. There are
no academic sources that describe how DNS tunnels
work. The most detailed documents are from Kamin-
sky’s seminars [5]. Moreover, although there have been
studies on detecting and preventing DNS tunneling [7],
no researchers have reported their performance. To this
end, this paper aims to investigate the viability and
performance of DNS tunnels. Our study will be of
interest to network administrators who are concerned
with users using DNS tunneling to circumvent network
security and accounting policies.

We have setup an experimental test-bed involving a
client on the University of Wollongong (UoW)’s network
and a tunneling server connected to Telstra’s broadband
network1. UoW’s firewall does not allow clients to
directly connect to the internet. It does, however, allow
DNS traffic from local nameservers. We experimented
with a DNS tunnel that is routed via the local DNS
server, and also one that connects directly to the tun-
neling server. For both experiments, we collected the
following metrics: (i) throughput, (ii) delay, (iii) sig-
nalling overheads, (iv) tunnel consistency, and (v) tunnel
reliability. A summary of key results, demonstrating the
practicality of DNS tunnels, is provided in Table I.

TABLE I
SUMMARY OF RESULTS.

Metrics No Tunnel Tunneled
TCP Throughput 145 KB/s 70-110 KB/s
Delay 13-57ms 140-1500ms
UDP Jitter 0.3-2.5ms 8-57ms
DNS Overheads N/A 200-2000%

1Telstra, http://www.telstra.com, is the national carrier of Australia.



The remainder of the paper is organized as follows. In
Section II we explain how DNS tunneling works. After
that, in Section III, we present our testbed, experiment
details and the tools used to characterize the performance
of DNS tunneling. We then present our results in Section
IV, followed by conclusions and future works in Section
V.

II. DNS TUNNELING

We first provide an overview of DNS tunneling before
presenting our experimental setup in Section III. Define
SM

p as a server S of type M using protocol P . CM is
a client C of type M . Moreover, we use the following
entities in our example:

• SL
DNS . This is a DNS server on the local network.

It is authoritative for a local zone and resolves
all queries for both local and remote hostnames.
Moreover, all DNS traffic from this server passes
through the firewall unimpeded.

• ST
DNS . A DNS server on the Internet that is running

a DNS tunneling software. This server intercepts
DNS requests containing covert information from
clients. Moreover, it is the authoritative server for a
domain; e.g., dnstunnel.org.

• SR
HTTP . Any web server on the Internet. For our

example below, we will use www.cnn.com.
• CT : Tunneling client. The client that communicates

with SR
HTTP over a DNS tunnel.

Figure 1 shows how CT is able to send a HTTP
request to www.cnn.com, which is hosted on SR

HTTP ,
using a DNS tunnel. The HTTP request is routed as
follows:

1) The tunneling software on CT intercepts the HTTP
request, defined as R, and transforms it into a
DNS request. It does so by encoding R using
base32, thereby representing R using the letters
of the alphabet A-Z and the numbers 2-7. This is
necessary because the resulting encoding needs to
adhere to the rules concerning valid DNS domain
names. If R is too big, it is split into multiple
requests.

2) The client then issues a DNS request for the do-
main base32{R}.dnstunnel.org, where base32{R}
denotes the base32 encoded HTTP request R.

3) The request for base32{R}.dnstunnel.org is first
sent to SL

DNS . Since SL
DNS does not know the

answer to the query, it proceeds to resolve the
query as per DNS’s resolution process. Eventually,
the query reaches ST

DNS , since ST
DNS has been

configured to be the authoritative server for the
domain dnstunnel.org and its sub-domains.

4) The tunneling software on ST
DNS decodes

base32{R} to reveal R, which it then forwards to
SR

HTTP .
5) ST

DNS then encodes the HTTP response from
SR

HTTP using base64, as DNS records are case
sensitive. The resulting encoded HTTP response is
then returned to SL

DNS in a DNS reply as a TXT
resource record.

6) Upon receiving the DNS reply, SL
DNS forwards it

to CT , which then decodes the HTTP response be-
fore passing the resulting data to the web browser.

The above DNS communication is simplex in nature.
A DNS server must wait for a request from a client
before it will undertake any action. Therefore, to ensure
bi-directionality, a client has to continuously poll the
tunneling server for information. Furthermore, due to
the limited size of DNS request and response mes-
sages, a single data block may cause the transmission
of multiple DNS requests and responses. Note that in
Step-3, the DNS resolution process involves “walking”
the DNS name hierarchy, which results in significant
delays. Fortunately, after the first reply, SL

DNS will have
learned the address of the authoritative name server for
the domain dnstunnel.org. Thus, allowing all subsequent
DNS queries to be sent directly to ST

DNS . Measurements
on our testbed, see Section III, show that caching reduces
delays by several orders of magnitude.

A concern with caching is that SL
DNS may stop a query

from reaching ST
DNS since it may have the query in

its cache. As shown in the example above, DNS tun-
neling works by creating “fake” sub-domains whereby
data/requests are encoded using base32. Therefore, even
though SL

DNS has cached a given sub-domain, the chance
that there will be another query bearing the same sub-
domain is almost non-existent.

We like point out that the use of arbitrary domain-
names could prove to be detrimental to the performance
of DNS. For example, if SL

DNS has a limited cache,
massive amounts of “fake” sub-domain queries might
cause the removal of older, but more relevant, cached
records. As a result, SL

DNS will find itself traversing
the DNS name hierarchy frequently, thus prolonging the
response time of applications such as web browsers.

A. Existing Implementations

To date there are many implementations, ranging from
proof of concept to fully working tunnels. The following
is a brief description of existing implementations.

• DNSCat [10]. DNSCat consists of two small pro-
grams, a server and client, written in Java. It is a
fast, efficient and highly configurable cross platform
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Fig. 1. DNS Tunneling.

implementation. In Linux, full support for tunneling
is achieved via PPPd .

• NSTX [4]. Name Server Transfer Protocol (NSTX)
is a hack to tunnel IP traffic over DNS that uses
Linux’s TAP/TUN . It requires a server running
the NSTX software as well as a second server
to administer the tunneling domain. This means it
needs one more server compared to DNSCat. It also
requires the client and server to have special kernel
configurations. For this reason, and because it is less
configurable, NSTX is less flexible than DNSCat.

• OzyManDNS [6]. This implementation consists of
four Perl scripts. Two of them allow users to upload
and download files using DNS. The other two form
a server client pair. The server imitates a DNS
server and listens on port 53 for incoming DNS
requests. The client converts input to DNS requests,
which are then sent to a given domain. These two
scripts can be used in conjunction with SSH to cre-
ate a tunnel. Users will then have to manually map
ports to pass traffic through the resulting tunnel.

III. TESTBED

To validate and characterize the performance of DNS
tunneling, we built a DNS tunnel between two machines,
one designated as the client and the other as the server.
The server waits for incoming connections and supplies
the client with the information required to set up the
tunnel. The client is a workstation on the UoW network
whereas the server is a laptop connected to Telstra’s
BigPond ADSL network. We chose DNSCat [10] for
our experiments due to it being an open source program
and because it is relatively easy to set up. Moreover, it
has full tunneling capabilities using Linux PPPd, which
provides benefits such as packet compression.

Figure 2 depicts the test-bed. It shows the client on
the same 10Mbit network as the local UoW DNS server.

The round trip time between the client and the tunneling
DNS server is approximately 16ms. The client is a Linux
workstation on the UoW network. It is behind a firewall
and does not have direct access to the Internet by default.
It does, however, have direct access to a local DNS
server. This DNS server resolves hostnames within the
UoW network as well as those on the Internet. The
client can obtain direct access to the Internet using a
web interface provided by the UoW’s IT services that
“opens” the firewall for a given machine. This allows
us to conduct experiments that directly connect to the
tunneling server.

On the server side, the DNSCat tunneling software
listens on port 53. This software acts like a regular
DNS server. This server is authoritative for the domain
tomvl.mooo.com, which is supplied free of charge by
FreeDNS2. The ADSL connection has a downstream
speed of 1.5Mbit/s and an upstream speed of 256kbit/s.

Fig. 2. Testbed.

A. DNSCat Settings

DNSCat provides various settings that influence tunnel
behavior and performance. Tweaking these settings is
necessary in order to find the optimal balance between
overhead and low delay. Two settings are of interest:

• Polling Interval (P). A DNSCat client has to con-
tinuously poll the server for data. To get the fastest

2http://freedns.afraid.org



response times, this interval needs to be small.
However, a small interval causes higher overhead,
due to the high number of polling messages.

• Minimum Send Delay (L). This controls the interval
which a DNSCat client waits before sending a
request. This setting is used to throttle the number
of DNS requests the client sends per minute to
prevent excessive amounts of requests from being
sent to the server. This delay has to be smaller than
the polling interval, since that interval can be seen
as the maximum send delay.

To study the impact of P and L values, we conducted
preliminary measurements to determine the delays be-
tween the client, UoW’s DNS server, and the DNS
tunneling server; see [12] for more details. We then chose
the following three sets of settings:

• Default. This setting is designed to minimize re-
dundant DNS queries, hence preventing excessive
DNS requests from being sent. This is achieved by
setting P to 1000ms, and L to 100ms.

• Medium. A medium setting is chosen to be the
middle ground between the slowest and fastest
setting. The polling interval is much smaller than
in the default setting, thereby allowing the server to
send back data more frequently. The P value in this
case is 200ms, and the L value is 100ms.

• High. To get the highest performance, both P
and L are set to a low value; 80ms and 40ms
respectively. Although this minimizes RTTs, there
is a lot of redundant traffic, which in turn means
high overheads. Note, since this setting generates
many DNS requests, DNS servers might throttle or
even drop DNS requests, thereby decreasing tunnel
performance and reliability.

B. Test Modes

All experiments are executed in three modes: (i)
control, (ii) direct tunnel, and (iii) tunneling via UoW’s
DNS server. The control mode involves a direct, non-
tunneled connection between the client and the server,
hence providing base results which we can compare DNS
tunneling to. Ideally, we want DNS tunneling to have
similar performance to results obtained in this mode. The
direct tunnel mode entails a direct DNS tunnel between
CT and ST

DNS . Theoretically, this gives the best possible
DNS tunnel performance, since packets are not routed
via SL

DNS . The last mode tunnels packets via UoW’s
DNS server. This setup represents a scenario that would
be used in practice to bypass a firewall.

C. Tools/Metrics

1) Ping: We use ping to measure delay and packet
loss. We experimented with seven packet sizes, ranging
from 16 to 1024 bytes, and sent 10 ICMP echo requests
per experiment. We then record the following metrics:

1) Minimum RTT (ms).
2) Maximum RTT (ms).
3) Average RTT (ms).
4) Packet loss (%).
2) Wireshark: To investigate the overheads due to

DNS tunneling, we use Wireshark3 to capture traffic
and count the number of bytes and packets generated.
Here, we define overhead as any extra bytes or packets
generated by DNS requests and responses.

3) Iperf: We use Iperf (v2.0.2) [1] to measure TCP
throughput (KB/s), UDP jitter (ms) and UDP packet loss
(%). The TCP throughput tests run for increasing lengths
of time; ranging from five to 120 seconds. This gives a
clear picture of throughput consistency. Additionally, it
shows the time taken by a TCP connection to saturate the
DNS tunnel. For UDP experiments, we use the following
rates: 410, 820, 1230 and 1640 kb/s.

IV. RESULTS

A. Ping

Figure 3 shows that the default setting introduce
enormous delays; 1300ms higher than non-tunneled de-
lays. The medium and high settings fare much better,
introducing respectively 12 and 6 times more latency
than a direct ping. Without tunneling, a direct ping from
the client to the tunneling DNS server shows a linear
increase in delay as packet size increases. None of the
tunneled tests follow this trend. This is because the
polling messages of DNSCat fluctuate over a wide range,
up to hundreds of milliseconds using the default setting.
Hence, the relatively small increase in network delay due
to packet sizes becomes negligible.

One thing that is immediately apparent from Figures
3 and 4 is that tunneling via SL

DNS performs less con-
sistently than tunneling directly to ST

DNS . Additionally,
the average delay is approximately 150 milliseconds
higher across all settings. This was to be expected,
as the UoW DNS server serves many clients, both on
and off the university campus. Moreover, the highly
fluctuating results, observed in the UoW tunnel test with
high setting, are due to packet losses. We will discuss
this further in Section IV-A.1. Apart from that, tunneling
via UoW’s DNS server yielded high RTTs; as packets
have to be routed through an extra server that is under
constant load.

3http://www.wireshark.org
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1) Packet Loss: All tests experienced a packet loss
of zero percent, except when tunneling through the
UoW DNS server with high setting, see Figure 5. The
high packet loss may be due to UoW’s DNS server
implementing a denial-of-service protection mechanism
that drops packets from clients that send DNS requests
at a high rate. Another reason could be that the server
is congested.

2) Overheads: From Figure 6, it is clear that DNS
tunneling generates significant amount of overheads,
even at the least aggressive setting. For example, the
16 byte ping results generate only 1140 bytes without
tunneling. With the default setting, 4675 bytes of traf-
fic are transmitted. This is an increase of 310%. The
medium and high settings generate even more overheads,
increasing the amount of bytes transmitted respectively
by 1024% and 1967%.

Fig. 5. Packet loss when tunneling via UoW’s DNS server using
high seting.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 0  200  400  600  800  1000

O
v
e
r
h
e
a
d
s
 
(
B
y
t
e
s
)

Packet Size (Bytes)

Default
Medium
High

Fig. 6. Total additional bytes transmitted compared to no tunneling.

B. Iperf

Figures 7 and 8 show Iperf’s TCP throughput. All
tunneled tests show low throughput in the short duration
tests. This is most noticeable when tests are done using
the default setting. However, in all cases, throughput
grows as the test duration increases. This is due to
TCP’s ack clock. Recall that TCP’s congestion window
(cwnd) grows in proportion to the incoming rate of
acknowledgments. Hence, when delays are high, such
as when using the default setting, TCP’s cwnd grows
slowly and the client is unable to saturate the DNS
tunnel. In fact, from the figures, the client requires 40
seconds before it is able to saturate the tunnel. We see
that the direct tunneled test reaches about 110 kilobytes
per second as compared to the 145 kilobytes per second
in the non-tunneled test. This means a tunnel can reach
up to 75% of the speed of a non-tunneled connection,
albeit with high overheads.

Figure 9 shows a large amount of jitter when running
UDP at 50 KB/s. When we increased the transmission
rate, jitter decreases to around 10-15 milliseconds. At
higher bandwidths, jitter values are very similar. Even
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when using the high setting, which caused performance
to fluctuate heavily in earlier tests, jitter is only 10 to 15
ms higher than when using a direct connection.

Table II shows the percentage of UDP packets lost
at a given transmission rate. In some cases, there was
no packet loss. In other cases, a higher percentage of
packets were dropped. The only pattern that we could
discern was that packet loss was more prevalent in tests
that tunneled packets through the UoW DNS server. Ad-
ditionally, tests that run at 200KB/s showed consistently
higher packet losses.

V. CONCLUSION

In this paper we have investigated the viability and
performance of DNS based covert channels. The results
of our research show that DNS tunnel performance
can be quite good. We have shown that tunneled TCP
connections can reach up to 110KB/s in throughput,
and that delays can be as low as 150ms. However, the
overheads generated by DNS tunneling are significant;
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we measured up to 2000% increase in traffic due to
overheads.

Future works include the detection and prevention of
DNS tunnels. As it stands now, there are a number
of detection methods [11]. The first method involves
finding anomalies in the number or size of DNS requests.
The second method involves packet inspection to find
domain names generated using base32 encoding. This,
however, requires the development of an algorithm to
detect base32 encoded data.

Another area for future research is the prevention of
DNS tunnels. Three approaches exist [11]. Firstly, DNS
access for regular users can be limited on networks
where users only use local services. If users only use a
local mail and proxy server, they do not need the ability
to resolve remote hostnames. Secondly, for wireless
LANs with DNS-enabled demilitarized zones, DNS rules
can be altered to resolve all hostnames to a local IP
address until the user has logged in. Lastly, excessive or
suspicious DNS requests can be blocked based on certain
rules, such as the number, type or size of DNS requests.
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