CSCI 4974 / 6974 Hardware Reverse Engineering

Lecture 15: Anti-tamper technologies

Homework 2: PCB RE

- Due last day of class
- Go to one of the tech dumps and find a PCB
- Take photos of both sides, both overview and closeups of interesting areas
- Identify as many ICs as you can
- Draw a block diagram of the board and write a short report describing its functionality

Types of defenses

 Non-invasive protections Lock bits, glitch detection Semi-invasive protections Metal shielding Invasive protections - Die coats Meshes Self-destructs

Lock bits

- Threat: Non-invasive memory dumping
- Config bit(s) set in firmware image
- Inhibit some operation when set
 - All JTAG operations
 - Debug port
 - Firmware readback
 - Erase/reprogram (use with care, can brick)

Lock bits

- Dedicated NVRAM (PIC12F)
 - Typically weaker more vulnerable to UV etc
- Embedded in firmware flash (XC2C32A)
 - Can be easy to find if address map is known
 - Sometimes harder to tamper with

Glitch sensors

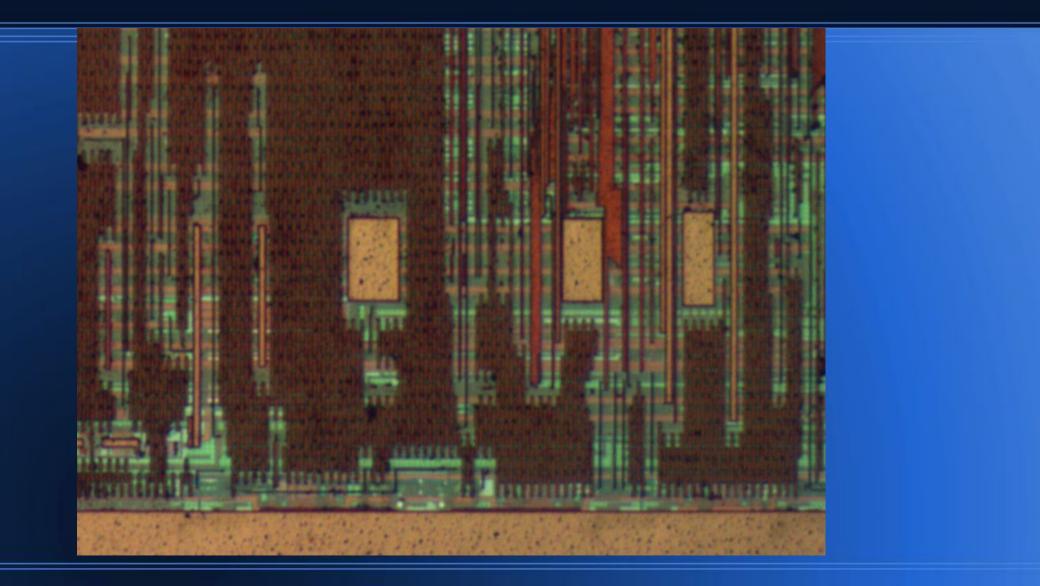
- Threat: Glitch/fault attacks
- Sensors to detect abnormal conditions
 - Fclk out of range
 - Vcore out of range
 - Temp out of range

Optical sensors

- Threat: Any attack involving opening package
- Scatter unshielded phototransistors around
- Trigger when illuminated
- May not detect laser glitching in a dark room

Glitch/optical sensors

- Can only detect specific fault conditions
- Will do nothing against other attacks
- Can sometimes be bypassed
 - ex: black ink over light sensors


Power noise generation

- Threat: Power analysis
- Random number generator plus variable load
- Induce random power fluctuations to confuse analysis
- Must be higher freq than sensitive power trace and completely unpredictable

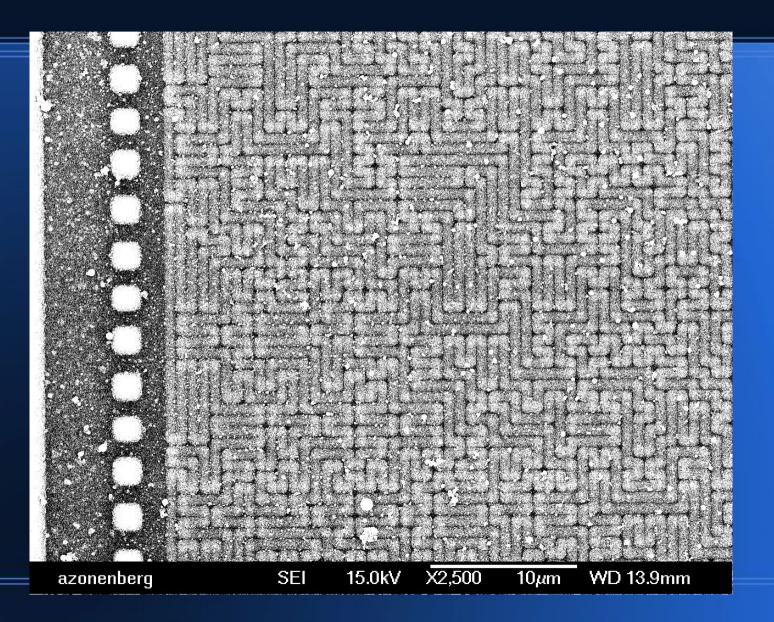
Optical shielding

- Threat: UV erasure
- Place lots of big opaque metal polygons over fuse/memory areas


Optical shielding

Placement

- Place features likely to be tampered with next to critical data
- Ex: interrupt vector address right next to security bits
- UV attack etc is more likely to damage both


PIC12F683 vs XC2C32A

Active meshes

- Fill the top surface of the die with wire(s) forming a space-filling curve
- Alarm if the wire is broken, or if two signals short together
- Effective at preventing physical probing
- Also blocks top signal layer from visual inspection

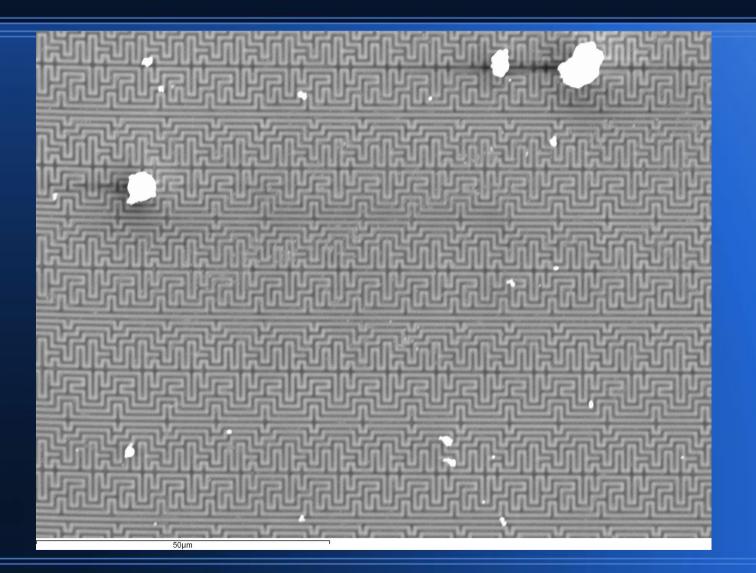
Active mesh (Atmel ATSHA204)

Active mesh (ST K710A)

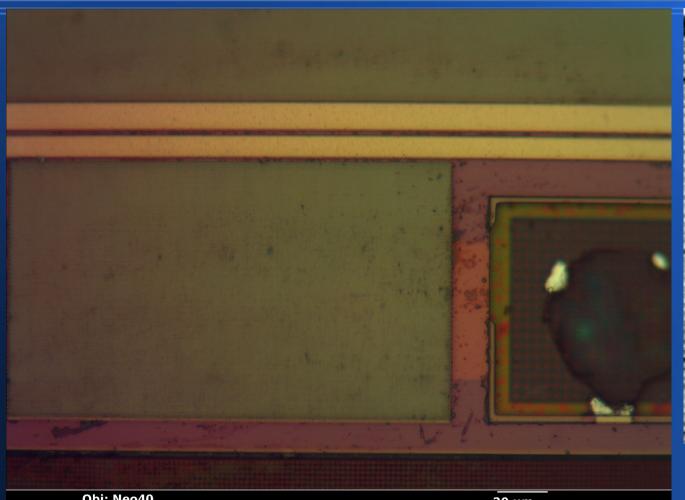
		A PART CALL
		· · · · · · · · · · · · · · · · · · ·
		A Contract por the the
		all for the first and the
		and the post of the
azonenberg	SEI 15.0kV X500 10μm WD 14.0mm	and and and and and and

azonenberg

SEI


15.0kV

X5.000


 $1\mu m$

WD 14.1mm

Active mesh (Renesas R5H30201)

Active mesh (AT&T SIM card)

Obj: Neo40

20 µm

Mesh bypass

- Several possible attacks
- Use FIB to nick (but not cut) mesh and edit underlying layers
- Remove mesh entirely and tie sense lines off
- Cut/gate mesh sensor output
- Go in from back side and avoid mesh entirely
- Etch/laser cut mesh and reconnect with probes

Works OK if not too many lines

Class discussion

 Which of the meshes shown do you think is most secure? Least? Why?

Tamper responses

- Freeze (gate clock)
- Reset
- Self-destruct (erase firmware/data/keys)

Self-destructs

Flash erase

- Can be prevented
- Laser/FIB/etch out charge pump caps
- Cut/short write enable lines, HV outputs, etc
- No HV = no writes
- Zeroize battery-backed SRAM
 - Much harder to prevent

Extreme countermeasures

- Mostly used in military devices? We have not see any of these in commercial products
 - Connoisseur Coating
 - LOPPER

Connoisseur Coating

- Developed by LLNL as part of the "Connoisseur project".
- Very little public information
- http://www.nytimes.com/1989/11/08/business/business-technology-a-new-coating-thwarts-chippirates.html
- http://web.mit.edu/6.857/OldStuff/Fall95/lectures/lecture2.ps

1989 New York Times article

- "A resin about the consistency of peanut butter"
- "Opaque and resists solvents, heat, grinding and other techniques"
- "A second-generation coating is being developed that will automatically destroy the chip when an attempt is made chemically to break through the protective layer."

1995 MIT lecture slides

- The second-generation coating?
- "a layer of alumina, silicon bits, and even sodium coating"
- "usually expensive"

Weaknesses of die coatings

- Intention is to make it difficult or impossible to reach top die surface
 - None of the public materials mention any protections on the back side
 - Die substrate is normally pretty thick, can handle some scratching
 - Backside attacks may allow coating bypass

LOPPER

- Developed by NSA for VINSON
- Not deployed initially due to budget cuts
- Plant "tiny, non-violent, shaped charges in critical junctures in our circuits that could be triggered by the application of external voltage"
- [A history of US COMSEC, page 148]

LOPPER v2?

- "burying a resistor in the chip substrates which will incinerate micro-circuitry with the application of external voltage"
- [A history of US COMSEC, page 149].

Possible LOPPER sighting?

- A large rock in Iran near a nuclear site exploded in 2012 when moved, throwing fragments of destroyed PCBs around
- http://www.nytimes.com/2014/01/15/us/nsa-effort-pries-open-computers-not-connected-tointernet.html?hp&_r=2

Attacks on LOPPER

"Iranian Embassy" attack

- If explosive charges are poorly placed, fragments may still yield useful circuit info
- Collect shrapnel from several units and reconstruct circuit

Attacks on LOPPER

- "Bomb squad" attack
 - Destroy trigger mechanism
 - Bypass sensors

Questions?

- TA: Andrew Zonenberg <azonenberg@drawersteak.com>
- Image credit: Some images CC-BY from:
 - John McMaster <JohnDMcMaster@gmail.com>

