
Security Engineering: A Guide to Building Dependable Distributed Systems

277

CHAPTER

14

Physical Tamper Resistance

It is relatively easy to build an encryption system that is secure if it

 is working as intended and is used correctly but it is still very hard to

 build a system that does not compromise its security in situations in

 which it is either misused or one or more of its sub-components fails

 (or is ‘encouraged’ to misbehave) ... this is now the only area where

 the closed world is still a long way ahead of the open world and the

 many failures we see in commercial cryptographic systems provide

 some evidence for this.
—BRIAN GLADMAN

14.1 Introduction

The techniques discussed in the previous few chapters—physical protection involving
barriers, sensors, and alarms—are often used to protect critical information processing
resources:

• A bank’s main servers will typically be kept in a guarded computer room.

• The seismic sensor packages used to detect unlawful nuclear tests may be at
the bottom of a borehole several hundred feet deep which is backfilled with
concrete.

• A hole-in-the-wall automatic teller machine is in effect a PC in a one-ton safe
with a number of fancy peripherals. These include not just banknote dispensers
but also temperature sensors to detect attempts to cut into the device, and ac-
celerometers to detect if it’s moved. An alarm should cause the immediate era-
sure of all crypto key material in the device.

But often it’s inconvenient to use a massive construction, and this has spawned a
market for portable tamper-resistant processors. These range from smartcards, which
typically perform a limited set of operations in support of an application such as pay-

Chapter 14: Physical Tamper Resistance

278

TV; through tamper-resistant cryptoprocessors, which are fitted into the servers that
manage PINs in cash machine networks; to elaborate high-end devices used in military
command and control.

I should note that there is some similarity between tamper-resistant devices and rep-
licated devices. If a service is implemented as a number of different servers in different
sites that perform transactions simultaneously and vote on the result, then it may be
possible to provide a high level of integrity protection against many types of attack.
The secret sharing schemes I discussed in Section 11.4 can also provide confidentiality
for key material. But tamper-resistant devices can at least in theory provide confidenti-
ality for the data too. This is one respect in which the principle that many things can be
done either with mathematics or with metal, breaks down.

14.2 History

The use of tamper resistance in cryptography goes back for centuries [428]. Naval
code-books have been weighted so they could be thrown overboard and sink in the
event of imminent capture; to this day, the dispatch boxes used by British government
ministers’ aides to carry state papers are lead-lined so they will sink. Codes and, more
recently, the keys for wartime cipher machines have been printed in water-soluble ink;
Russian one-time pads were printed on cellulose nitrate, so that they would burn furi-
ously if lit; and one U.S. wartime cipher machine came with self-destruct thermite
charges so it could be destroyed quickly if need be.

But such mechanisms depended on the vigilance of the operator, and key material
was often captured in surprise attacks. So attempts were made to automate the process.
Early electronic devices, as well as some mechanical ciphers, were built so that open-
ing the case erased the key settings.

Following a number of cases in which cipher staff sold key material to the other
side—such as the notorious Walker family in the United States—engineers paid more
attention to the question of how to protect keys in transit as well as in the terminal
equipment itself. The goal was ‘to reduce the street value of key material to zero’, and
this can be achieved either by tamper resistant devices from which the key cannot be
extracted, or tamper evident ones from which key extraction would be obvious.

Paper keys were once carried in “tattle-tale containers,” designed to show evidence
of tampering. When electronic key distribution came along, a typical solution was the
“fill gun,” a portable device that would dispense crypto keys in a controlled way.
Nowadays, this function is usually performed using a small security processor such as
a smartcard. Control protocols range from a limit on the number of times a key can be
dispensed, to mechanisms that use public key cryptography to ensure that keys are
loaded only into authorized equipment. The control of key material also acquired
broader purposes. In both the United States and Britain, it was centralized and used to
enforce the use of properly approved computer and communications products. Live key
material would only be supplied to a system once it had been properly accredited.

Once initial keys have been loaded, further keys may be distributed using various
kinds of authentication and key agreement protocols. I already talked about many of
the basic tools, such as key diversification, in Chapter 2, “Protocols,” and I’ll have
more to say on protocols later in this chapter. Let’s first look at the physical defenses
against tampering.

Security Engineering: A Guide to Building Dependable Distributed Systems

279

14.3 High-End Physically Secure Processors

An example worth studying is the IBM 4758 (Figure 14.1). This is important for two
reasons. First, it is the only commercially available processor to have been successfully
evaluated (at the time of writing) to the highest level of tamper resistance (FIPS 140-1
level 4) [576] set by the U.S. government. Second, there is extensive literature about it
available in the public domain, including the history of its design evolution, its protec-
tion mechanisms, and the transaction set it supports [718, 795, 796].

The evolution that led to this product is briefly as follows. From the earliest days of
computing, computers were protected physically because of their high value. However,
the spread of multi-user operating systems in the 1960s, and the regularity with which
bugs were found in their protection mechanisms, meant that large numbers of people
might potentially have access to the data being processed. With particularly sensitive
data—such as long-term cryptographic keys and the personal identification numbers
(PINs) used by bank customers to identify themselves to cash machines—it was real-
ized that the level of protection available from commercial operating systems was
likely to remain insufficient.

Figure 14.1 The IBM 4758 cryptoprocessor (courtesy of Steve Weingart).

Chapter 14: Physical Tamper Resistance

280

Figure 14.2 The 4758 partially opened, showing (from top left downward) the circuitry, alu-
minium electromagnetic shielding, tamper-sensing mesh and potting material (courtesy of
Frank Stajano).

This led to the development of standalone security modules of which the first to be
commercially successful were the IBM 3848 and the VISA security module. Both of
these were microcomputers encased in robust metal enclosures, with encryption hard-
ware and special key memory, which was static RAM designed to be zeroized when the
enclosure was opened (Figure 14.2). This was accomplished by wiring the power sup-
ply to the key memory through a number of lid switches. The device operator would
then have to reload the key material.

How to Hack a Cryptoprocessor (1)

The obvious attack on such a device is for the operator to steal the keys. In early
banking security modules, the master keys were kept in PROMs which were loaded
into a special socket in the device, to be read during initialization, or as strings of
numbers that were typed in at a console. The PROMs could easily be pocketed, taken
home and read out using hobbyist equipment. Cleartext paper keys were even easier to
steal.

The fix was shared control—to have two or three PROMs with master keys, and
make the device master keys the exclusive-or of all the components. These devices can
then be kept in different safes. (With the virtue of hindsight, the use of exclusive-or for
this purpose was an error, and a hash function should have been used instead. I’ll ex-
plain why shortly.)

However, this procedure is somewhat tedious, and may well degrade as it becomes
routine. In theory, when a device is maintained, its custodians should open the lid to
erase the live keys, let the maintenance engineer load test keys, and then re-load live
keys afterwards. But the managers with custodial responsibility will often give the
PROMs to the engineer rather than bothering with them. I’ve even come across cases
of the master keys for an automatic teller machine being kept in the correspondence
file in a bank branch, where any of the staff could look them up. Thus, the goal was to

Security Engineering: A Guide to Building Dependable Distributed Systems

281

minimize the number of times that a reload would be necessary, such as for mainte-
nance or following a power failure. So security modules typically have batteries to
back up the mains power supply (at least to the key memory). This meant that in prac-
tice, the custodians had to load the keys only when the device was first installed, and
after occasional maintenance visits subsequently.

It has been debated whether frequent or infrequent key loading is best. If key load-
ing is very infrequent, the responsible personnel will likely never have performed the
task before, and may either delegate it out of ignorance or be hoodwinked by a more
technically astute member of staff into doing it in an insecure way (see [19] for a case
history of this). The modern trend is toward devices that generate keys (or have them
loaded) in a secure facility after manufacture but before distribution. Such keys may be
kept on smartcards and used to bootstrap the keying of more substantial devices.

How to Hack a Cryptoprocessor (2)

Early devices were vulnerable to attackers cutting through the casing, and to mainte-
nance engineers who could disable the lid switches on one visit and extract the keys on
the next. Second-generation devices dealt with the easier of these problems, namely
physical attack, by adding more sensors such as photocells and tilt switches. These
may be enough for a device kept in a secure area to which access is controlled. But the
hard problem is to prevent attacks by the maintenance staff.

The strategy adopted by many of the better products is to separate all the compo-
nents that can be serviced (such as batteries) from the core of the device (such as the
tamper sensors, crypto, processor, key memory, and alarm circuitry). The core is then
“potted” in a solid block of a hard, opaque substance such as epoxy. The idea is that
any physical attack will be “obvious” in that it involves an action such as cutting or
drilling, which can be detected by the guard who accompanies the maintenance techni-
cian into the bank computer room.

How to Hack a Cryptoprocessor (3)

However, if a competent person can get unsupervised access to the device for even a
short period of time (or if the guard has not been properly trained), then potting the
device core is inadequate. For example, it is often possible to scrape away the potting
with a knife, and drop the probe from a logic analyzer on to one of the bus lines in the
core. Most common cryptographic algorithms, such as RSA and DES, have the prop-
erty that an attacker who can monitor any bitplane during the computation can recover
the key [370]. So an attacker who can get a probe anywhere into the device while it is
operating can likely extract secret key material.

So the high-end products have a tamper-sensing barrier whose penetration triggers
destruction of the secrets inside. An early example appeared in IBM’s mABYSS system
in the mid-1980s. This used loops of 40-gauge nichrome wire, which were wound
loosely around the device as it was embedded in epoxy, then connected to a sensing
circuit [795]. Bulk removal techniques such as milling, etching, and laser ablation
break the wire, which erases the keys.

Chapter 14: Physical Tamper Resistance

282

But the wire-in-epoxy technique can be vulnerable to slow erosion using sand
blasting; when the sensing wires become visible at the surface of the potting, shunts
can be connected around them. So the next major product from IBM, the 4753, used a
metal shield combined with a membrane printed with a pattern of conductive ink and
surrounded by a more durable material of similar chemistry. The idea was that any at-
tack would break the membrane with high probability.

How to Hack a Cryptoprocessor (4)

The next class of methods an attacker can try involve the exploitation of memory re-
manence, the fact that many kinds of computer memory retain some trace of data that
have been stored there. Sometimes, all that is necessary is that the same data were
stored for a long time. An attacker might bribe the garbage truck operator to obtain a
bank’s discarded security modules: as reported in [44], once a certain security module
had been operated for some years using the same master keys, the values of these keys
were burned in to the device’s static RAM. On power-up, about 90% of the relevant
bits would assume the values of the corresponding keybits, which was more than
enough to recover the keys.

Memory remanence affects not just static and dynamic RAM, but other storage me-
dia as well. For example, the heads of a disk drive change alignment over time, so that
it may be impossible to completely overwrite data that were first written some time
ago. The relevant engineering and physics issues are discussed in [362]. The NSA has
published guidelines (the Forest Green Book) on preventing remanence attacks [243].

The better third-generation devices have RAM savers, which function in much the
same way as screen savers; they move data around the RAM to prevent it being burned
in anywhere.

How to Hack a Cryptoprocessor (5)

A further problem is that computer memory can be frozen by low temperatures. By the
1980s it was realized that below about –20°C, static RAM contents can persist for
some time—seconds to minutes—after power is removed. Data remanence gets stead-
ily longer at lower temperatures. So an attacker might freeze a device, remove the
power, cut through the tamper sensing barrier, extract the RAM chips containing the
keys and power them up again in a test rig. RAM contents can also be burned in by
ionizing radiation. (For the memory chips of the 1980s, this required a fairly serious
industrial X-ray machine; but as far as I’m aware, no-one has tested the current, much
smaller, memory chip designs.)

So the better devices have temperature and radiation alarms. These can be difficult
to implement properly, as modern RAM chips exhibit a wide variety of memory rema-
nence behaviors, with the worst of them keeping data for several seconds even at room
temperature [712]. (This shows the dangers of relying on a property of some compo-
nent to whose manufacturer the control of this property is unimportant.) Some military
devices use protective detonation; there are memory chips potted in steel cans with a
thermite charge precisely calculated to destroy the chip without causing gas release
from the can.

How to Hack a Cryptoprocessor (6)

The next set of attacks on cryptographic hardware involve either monitoring the RF
and other electromagnetic signals emitted by the device, or even injecting signals into
it and measuring their externally visible effects. This technique, which is variously

Security Engineering: A Guide to Building Dependable Distributed Systems

283

known as Tempest or power analysis, is such a large subject that I devote the next
chapter to it. As far as the 4758 is concerned, the strategy is to have solid aluminium
shielding, and to low-pass-filter the power supply to block the egress of any signals at
the frequencies used internally for computation.

The 4758 also has an improved tamper-sensing membrane, in which four overlap-
ping zig-zag conducting patterns are doped into a urethane sheet, which in turn is pot-
ted in a chemically similar substance so that an attacker cutting into the device has
difficulty even detecting the conductive path, let alone connecting to it. This potting
surrounds the metal shielding which in turn contains the cryptographic core (see Figure
14.2). The design is described more detail in [718].

I don’t know how to attack the hardware of the 4758. IBM declined to sell us sam-
ples for attack, but we did come up with a number of ideas after scrutinizing one, such
as:

How to Hack a Cryptoprocessor (7)

Here are some speculative ideas about how to break into a 4758.

• The straightforward approach would be to devise some way to erode the pro-
tective potting, detect mesh lines, and connect shunts around them. Probably
the first thing I’d try is a magnetic force microscope.

• One could invent a means of drilling holes eight millimeters long and only 0.1
millimeters wide (that is, much less than the mesh line diameter). This isn’t
feasible with current mechanical drills, which are limited to an aspect ratio of
15 or so, and the same holds for laser ablation and ion milling. However I
speculate that some combination of nanotechnology and ideas from the oil in-
dustry might make such a drill possible eventually. Then one could drill right
through the protective mesh with a fair probability of not breaking the circuit.

• Having dismantled a few instances of the device and understood the operation
of its hardware, the attacker might use shaped explosive charges to send
plasma jets of the kind discussed in Section 11.5 into the device to destroy the
tamper-sensing and memory zeroization circuitry before they have time to re-
act.

The success of such attacks is uncertain, and they are likely to remain beyond the re-
sources of the average villain for some time.

When I shipped the first draft of this book in September 2000, I wrote at this point:
“So by far the most likely attacks on 4758 based systems involve the exploitation of
logical rather than physical flaws.” By the time I edited this paragraph at the proof
stage, this had come true in spades. Most users of the 4758 use an application called
CCA which is described in [388] and contains many features that make it difficult to
use properly. Having been suspicious of the complexity of this instruction set, I passed
the manual to a new research student, Mike Bond, and asked him if he could find any
vulnerabilities. By the middle of November, he had found a number of problems, in-
cluding a protocol-level attack that enables a capable opponent to extract all the inter-
esting keys from the device. We’ll discuss this attack below.

Finally, it should be mentioned that the main constraints on the design and manu-
facture of security processors are remarkably similar to those encountered with more
general alarms. There is a trade-off between the false alarm rate and the missed alarm
rate, and thus between security and robustness. Security processors often need to be
handled with care; if they self-destruct at temperatures of -20°C, they cannot be dis-

Chapter 14: Physical Tamper Resistance

284

tributed through normal computer industry channels, where goods are often subjected
to –40°C in winter. Vibration, power transients, and electromagnetic interference can
also be a problem with some designs. Military equipment makers have a particularly
tough problem. For example, if exposing the crypto processor of a military tactical ra-
dio to radiation causes it to self-destruct, then hardening the device sufficiently might
make it too heavy to carry.

14.4 Evaluation

A few comments about the evaluation of tamper-resistant devices are in order before
we go on to discuss cheaper devices.

The IBM paper that describes the design of the 4758’s predecessor, the 4753 [4],
proposed the following classification scheme for attackers:

1. Class 1 attackers—‘clever outsiders’—are often very intelligent but may have
insufficient knowledge of the system. They may have access to only moder-
ately sophisticated equipment. They often try to take advantage of an existing
weakness in the system, rather than try to create one.

2. Class 2 attackers—‘knowledgeable insiders’—have substantial specialized
technical education and experience. They have varying degrees of under-
standing of parts of the system but potential access to most of it. They often
have highly sophisticated tools and instruments for analysis.

3. Class 3 attackers—‘funded organizations’—are able to assemble teams of
specialists with related and complementary skills backed by great funding re-
sources. They are capable of in-depth analysis of the system, designing so-
phisticated attacks, and using the most advanced analysis tools. They may use
class 2 adversaries as part of the attack team.

Within this scheme, the 4753 was aimed at blocking knowledgeable insiders, while
its successor, the 4758, is aimed at (and certified for) blocking funded organizations.

The FIPS certification scheme is operated by laboratories licensed by the U.S. gov-
ernment and set out in the FIPS 140-1 standard. This sets out four levels of protection,
with level 4 being the highest (currently, the 4758 is the only device certified at this
level). There is a large gap between level 4 and the next one down, level 3, where only
potting is required; this means that attacks which exploiting electromagnetic leakage,
memory remanence, drilling, sandblasting, and so on may still be possible. I have han-
dled a level 3 certified device from which I could scrape off the potting with my Swiss
army knife! So while FIPS 140-1 level 3 devices can be (and have been) defeated by
class 1 attackers in the IBM sense, the next step up—FIPS 140-1 level 4—is expected
to keep out an IBM class 3 opponent. There is no FIPS level corresponding to a de-
fense against IBM’s class 2.

The original paper on levels of evaluation, written by IBM engineers, had proposed
six levels [796]: the FIPS standard adopted the first three of these as its levels 1–3, and
the proposed level 6 as its level 4. The gap, commonly referred to as “level 3.5,” is
where many of the better commercial systems are aimed. Such equipment certainly
attempts to keep out the class 1 attack community, while making life hard for class 2,
and expensive for class 3.

Security Engineering: A Guide to Building Dependable Distributed Systems

285

That said, I am not convinced that the IBM classification is correct. I know of one
large funded organization that bought chip-testing equipment, tried to break into a
smartcard, and failed; they concluded that smartcards were completely tamper-proof.
However, as we shall see shortly, many smartcards have been broken by level 1 attack-
ers. The persistence and cunning of the attacker is far more important than the number
of people on his employer’s payroll.

14.5 Medium-Security Processors

Good examples of level 3.5 products are the iButton and 5002 security processors from
Dallas Semiconductor, and the Capstone chip used to protect U.S. military communi-
cations up to Secret. While the 4758 costs $2000, these products cost of the order of
$10–20. Yet mounting an attack on them is far from trivial.

14.5.1 The iButton

Figure 14.3 iButton internals (courtesy of Dallas Semiconductor Inc.).

The iButton from Dallas Semiconductor is designed to be a minimal, self-contained
cryptographic processor. It has an 8051 microcontroller with a modular exponentiation
circuit, static RAM for keys and software, a clock, and tamper sensors. These are en-
cased in a steel can with a lithium battery, which can maintain keys in the RAM for a
design life of 10 years (see Figure 14.3). It is small enough to be worn in a signet ring
or carried as a key fob. An early application was as an access token for the “Electronic
Red Box”, a secure laptop system designed for use by U.K. government ministers. To
access secret documents, the minister had to press his signet ring into a reader at the
side of the laptop. (One of the design criteria had been: “Ministers shall not have to use

Chapter 14: Physical Tamper Resistance

286

passwords.”) Other applications include the Istanbul mass transit system, parking me-
ters in Argentina, and the electronic stamps for the U.S. Postal Service that I men-
tioned in the previous chapter [753]. The device is now being equipped with a Java
interpreter, and marketed as the Java ring, a tamper-resistant device that users can pro-
gram for their own applications.

How might an iButton be attacked? The most obvious difference from the 4758 is
the lack of a tamper-sensing barrier. So one might try drilling in through the side, then
either probe the device in operation or disable the tamper-sensing circuitry. Because
the iButton has lid switches to detect the can being opened, and its processor is
mounted upside-down on the circuit board (with a mesh in the top metal layer of the
chip), this is unlikely to be a trivial exercise. It might well involve building custom jigs
and tools. In short, it’s a tempting target for the next bright graduate student who wants
to win their spurs as a hardware hacker.

14.5.2 The Dallas 5002

Another medium-grade security device from Dallas is the DS5002 microcontroller,
which is widely used in devices such as point-of-sale terminals, where it holds the keys
used to encrypt customer PINs.

The ingenious idea behind this device is bus encryption. The chip has added hard-
ware that encrypts memory addresses and contents on the fly as data are loaded and
stored. This means that the device can operate with external memory, and is not limited
to the small amount of RAM that can be fitted into a low-cost tamper-sensing package.
Each device has a unique master key, which is generated at random when it is powered
up. The software is then loaded through the serial port, encrypted, and written to exter-
nal memory. The device is then ready for use. Power must be maintained constantly, or
the internal register that holds the master key will lose it; this also happens if a physi-
cal tampering event is sensed (like the iButton, the DS5002 has a tamper-sensing mesh
built into the top metal layer of the chip).

An early version of this processor (1995) fell victim to an ingenious protocol level
attack by Markus Kuhn, the cipher instruction search attack [477]. The idea is that
some of the processor’s instructions have a visible external effect such as I/O. In par-
ticular, one instruction causes the next byte in memory to be output to the device’s par-
allel port. The trick is to intercept the bus between the processor and memory using a
test clip, and feed in all possible 8-bit instruction bytes at some point in the instruction
stream. One of them should decrypt to the parallel output instruction, and output the
plaintext version of the next “encrypted memory” byte. By varying this byte, a table
could be built up of corresponding plaintext and ciphertext. After using this technique
to learn the encryption function for a sequence of seven or eight bytes, the attacker
could encipher and execute a short program to dump the entire memory contents.

The full details are a bit more intricate. Dallas has since fixed the problem, but it is a
good example of the completely unexpected things that go wrong when trying to im-
plement a clever new security concept for the first time.

Security Engineering: A Guide to Building Dependable Distributed Systems

287

14.5.3 The Capstone/Clipper Chip

In 1993, the security world was convulsed when the U.S. government introduced the
Clipper chip as the replacement for DES. Clipper, also known as the Escrowed En-
cryption Standard (EES), was a tamper-resistant chip that implemented the Skipjack
block cipher in a protocol designed to allow the U.S. government to decrypt any traffic
encrypted using Clipper. The idea was that when a user supplied Clipper with a string
of data and a key with which to encrypt it, the chip returned not just the ciphertext but
also a Law Enforcement Access Field, or LEAF, which contained the user-supplied key
encrypted under a key embedded in the device and known to the government. To pre-
vent people cheating and sending along the wrong LEAF with a message, the LEAF
had a cryptographic checksum computed with a “family key,” shared by all interoper-
able Clipper chips. This functionality was continued into the next-generation chips,
called Capstone, which incorporate ARM processors to do public key encryption and
digital signature operations.

Almost as soon as Capstone chips hit the market, a vulnerability was found in the
LEAF mechanism [113]. The cryptographic checksum used to bind the LEAF to the
message was only 16 bits long, making it possible to feed random message keys into
the device until one with a given LEAF was found, thus enabling a message to be sent
with a LEAF that would remain impenetrable to the government. The Clipper initiative
was abandoned and replaced with other policies aimed at controlling the “prolifera-
tion” of cryptography. Nevertheless, Capstone quietly entered government service and
is now widely used in the Fortezza card, a PCMCIA card used in PCs to encrypt data at
levels up to Secret. The Skipjack block cipher, which was initially classified, has since
been placed in the public domain [577].

Of greater interest here are the tamper protection mechanisms used, as they are per-
haps the most sophisticated in any single-chip tamper resistant device, and were
claimed at the time to be sufficient to withstand a “very sophisticated, well-funded ad-
versary” [578]. Although the NSA claimed that the Clipper chip would be unclassified
and exportable, I’ve not been able to get hold of one for dismantling, despite repeated
attempts.

Its successor is the QuickLogic military FPGA, designed to enable its users to con-
ceal proprietary algorithms from their customers; it is advertised as being “virtually
impossible to reverse-engineer.” Like Clipper, it uses vialink read-only memory
(VROM), in which bits are set by blowing antifuses between the metal 1 and metal 2
layers on the chip. A programming pulse at a sufficiently high voltage is used to melt a
conducting path through the polysilicon that separates the two metal layers. Further
details and micrographs can be found in the data book [347].

There are basically three approaches to reverse engineering an antifuse FPGA.

• The first is to determine the presence of blown antifuses using optical or elec-
tron microscopy, having first removed the top metal layer of the chip. This can
be extremely tedious; even if the bits are read out correctly, a lot more work
remains to figure out what they mean.

• A smarter approach is to abuse the programming circuit. This sends a pulse to
the fuse and stops it once the resistance drops, which means that the metal has
melted and established contact; if the pulse isn’t stopped, the metal might va-
porize and go open-circuit again. Thus, circuits for detecting whether a fuse is

Chapter 14: Physical Tamper Resistance

288

open or short must be provided; and if they aren’t sufficiently disabled after
programming, they can be used to read the device out.

• The fastest approach, which is particularly easy when the cryptographic algo-
rithm being executed is known, is to drop microprobes directly on to the gate
array and look at the signals. Suitable analysis techniques, such as those de-
scribed in Section 15.4, should quickly yield the key. Signals can also be col-
lected using electromagnetic or electro-optic sensors, voltage contrast
microscopy and a growing number of other chip-testing techniques. Even
where the algorithm isn’t known initially, it may be faster to reconstruct it
from observing on-chip signals than from doing a full circuit reconstruction.

This technology isn’t infallible, but used intelligently it certainly appears to have
some potential.

14.6 Smartcards and Microcontrollers

The most common secure processors nowadays are smartcards and similar self-
contained security processors. These cost maybe a dollar each in bulk, and are being
deployed in environments such as telephone cards, pay-TV subscriber cards, hotel door
locks, and even (in some countries) bank cards.

In such applications, the opponent can often obtain many sample devices and take
them away to probe at their leisure. As a result, many attacks on them have been de-
veloped.

Although they are now being marketed as the “new” security solution, smartcards
actually go back a long way, with the early patents (which date from the late 1960s
through mid-1970s) having long since expired [247]. For a history of the development
of smartcards, see [358]. For many years, they were mostly used in France, where
much of the original development work was done with government support. In the late
1980s and early 1990s, they started to be used on a large scale outside France, princi-
pally as the subscriber identity modules (SIMs) in GSM mobile phones and as sub-
scriber cards for pay-TV stations.

A smartcard is a self-contained microcontroller, with a microprocessor, memory and
a serial interface integrated on to a single chip that is packaged in a plastic card.
Smartcards used in banking and in the older mobile phones use a standard-size bank
card, while in the newer, smaller mobile phones, a much smaller size is used. Smart-
card chips are also packaged in other ways. For example, most U.K. prepayment elec-
tricity meters use them packaged in a plastic key, as do Nagravision pay-TV set-top
boxes. In the STU-III secure telephones used in the U.S. government, each user has a
crypto ignition key, which is also packaged to look and feel like a physical key.

The single most widespread application that uses smartcards is the GSM mobile
phone system, a digital standard used in some U.S. networks and in almost all coun-
tries outside the United States. The telephone handsets are commodity items, and are
personalized for each user by means of a SIM, a smartcard which contains not just your
personal phone book, call history and so on, but also a cryptographic key with which
you authenticate yourself to the network.

Security Engineering: A Guide to Building Dependable Distributed Systems

289

The strategy of using a cheap smartcard to provide the authentication and other secu-
rity functions of a more expensive consumer electronic device has a number of advan-
tages. The expensive device can be manufactured in bulk, with each unit being exactly
the same; while the smartcard, which provides subscriber-level control, can be replaced
relatively quickly and cheaply in the event of a successful attack. This has led many
pay-TV operators to adopt smartcards. The satellite TV dish and decoder become
commodity consumer durables, while each subscriber gets a personalized smartcard
containing the key material needed to decrypt the channels to which they have sub-
scribed.

Chipcards are also used in a range of other applications, from hotel keys to public
payphones—though in such applications it’s common for the card to contain no micro-
processor but just some EEPROM memory to store a counter or certificate, and some
logic to perform a simple authentication protocol.

Devices such as prepayment electricity meters are typically built around a micro-
controller that performs the same kind of functions as a smartcard but has less sophis-
ticated protection. Typically, this consists of setting a single “memory protection” bit
that prevents the EEPROM contents being read out easily by an attacker. There have
been many design defects in particular products; for example, a computer authentica-
tion token called iKey had a master password that was hashed using MD5 and stored
on an EEPROM external to the processor, enabling a user to overwrite it with the hash
of a known password and assume complete control of the device [459].

Many other low-cost security products are based on some kind of microcontroller (or
dedicated logic that performs an authentication protocol of some kind). An increasing
number are contactless, and function as radio frequency identifiers that provide theft
protection or just “smart labels” for a wide range of products. As for more systemic
vulnerabilities, the attacks on smartcards also tend to work on microcontroller-based
devices, so I won’t treat them separately from this point on. For more details of attacks
specific to microcontrollers, see [43].

14.6.1 Architecture

The typical smartcard consists of a single die of up to 25 square millimeters of silicon,
containing an 8-bit microprocessor (such as an 8051 or 6805), although some of the
newer devices are starting to appear with a 32-bit processor such as the ARM. It also
has serial I/O circuitry and a hierarchy of three classes of memory: ROM to hold the
program and immutable data; EEPROM to hold customer-specific data, such as the
registered user’s name and account number as well as crypto keys, value counters and
the like; and RAM registers to hold transient data during computation.

The memory is very limited by the standards of normal computers. A typical card on
sale in 2000 might have 16 Kbytes of ROM, 16 Kbytes of EEPROM and 256 bytes of
RAM. The bus is not available outside the device; the only connections supplied are
for power, reset, a clock, and a serial port. The physical, electrical, and low-level logi-
cal connections, together with a file-system-like access protocol, are specified in ISO
7816.

Chapter 14: Physical Tamper Resistance

290

14.6.2 Security Evolution

When I first heard a sales pitch from a smartcard vendor—in 1986, when I was work-
ing as a banker—I asked how come the device was secure. I was assured that because
the machinery needed to make the card cost $20 million, just as for making banknotes,
the system must be secure. I didn’t believe this, but didn’t then have the time or the
tools to prove the claim wrong. I later learned from industry executives that none of
their customers were prepared to pay for serious security until about 1995, so until then
they relied on the small size of the devices, the obscurity of their design, and the rela-
tive unavailability of chip-testing tools.

The application that changed all this was satellite TV. Operators broadcast their sig-
nals over a large footprint—such as all of Europe—and gave subscribers smartcards
that would compute the keys needed to decipher the channels they’d paid for. Since the
operators had usually only purchased the rights to the movies for one or two countries,
they couldn’t sell the subscriber cards elsewhere. This created a black market in pay-
TV cards, into which forged cards could be sold. Another major factor was that Star
Trek, which people in Europe had been picking up from U.K. satellite broadcasts for
years, was suddenly encrypted in 1993. This motivated a lot of keen young computer
science and engineering students to look for vulnerabilities.

Since then, major financial frauds have been carried out with cloned cards. The first
to be reported involved a smartcard used to give Portuguese farmers rebates on fuel.
The villain conspired with petrol stations that registered other fuel sales to the bogus
cards in return for a share of the proceeds. The fraud, which took place in Febru-
ary–March 1995, is reported to have netted about thirty million dollars [557].

How to Hack a Smartcard (1)

The earliest hacks targeted the protocols in which the cards were used. For example,
some early pay-TV systems gave each customer a card with access to all channels, then
sent messages over the air to cancel those channels to which the customer hadn’t sub-
scribed after an introductory period. This allowed an attack whereby a device was in-
serted between the smartcard and the decoder to intercept and discard any messages
addressed to the card. Subscribers could then cancel their subscription without the
vendor being able to cancel their service.

The same kind of attack was launched on the German phone card system. A hacker
called Urmel tipped off Deutsche Telekom that it was possible to make phone cards
that gave unlimited free calls. He had discovered this by putting a laptop between a
card and a phone to analyze the traffic. Telekom’s experts refused to believe him, so he
exploited his knowledge by selling handmade chipcards in brothels and in hostels for
asylum seekers [726]. Such low-cost attacks were particularly distressing to the phone
companies, as the main reason for moving to smartcards was to cut the cost of having
to validate cheaper tokens online [78]. I’ll discuss these protocol failures further in the
chapter on copyright enforcement systems. There has also been a fairly full range of
standard computer attacks, such as stack overwriting by sending too long a string of
parameters. In the following, I concentrate on the attacks that are peculiar to smart-
cards.

Security Engineering: A Guide to Building Dependable Distributed Systems

291

How to Hack a Smartcard (2)

Smartcards use an external power supply, and store security state such as crypto keys
and value counters in EEPROM, so an attacker could freeze the EEPROM contents by
removing the programming voltage, VPP. Early smartcards received VPP on a dedicated
connection from the host interface. This led to very simple attacks: by covering the VPP

contact with sticky tape, cardholders could prevent cancellation signals from affecting
their card. The same trick could be used with some payphone chipcards; a card with
tape over the appropriate contact had “infinite units.”

The fix was to generate VPP internally from the supply voltage VCC using a voltage
multiplier circuit. However, this isn’t entirely foolproof as this circuit can be destroyed
by an attacker. So a prudent programmer, having (for example) decremented the retry
counter after a user enters an incorrect PIN, will read it back and check it. She will also
check that memory writing actually works each time the card is reset, as otherwise the
bad guy who has shot away the voltage multiplier can just repeatedly reset the card and
try every possible PIN, one after another.

How to Hack a Smartcard (3)

Another early attack was to slow down the card’s execution, or even single-step it
through a transaction by repeatedly resetting it and clocking it n times, then n + 1
times, and so on. In one card, it was possible to read out RAM contents with a suitable
transaction after reset, as working memory wasn’t zeroized. With many cards, it was
possible to read the voltages on the chip surface using an electron microscope. (The
low-cost scanning electron microscopes generally available in universities can’t do
voltage contrast microscopy at more than a few tens of kilohertz, hence the need to
slow down the execution.)

Now many smartcard processors have a circuit to detect low clock frequency, which
will either freeze or reset the card. But, as with burglar alarms, there is a trade-off be-
tween the false alarm rate and the missed alarm rate. This leads to many of the alarm
features provided by smartcard chip makers simply not being used by the OEMs or
application developers. For example, with cheap card readers, there can be wild fluc-
tuations in clock frequency when a card is powered up, causing so many false alarms
that some developers do not use the feature. Clearly, low clock frequency detectors
need careful design.

How to Hack a Smartcard (4)

Once pay-TV operators had fixed most of the simple attacks, pirates turned to attacks
using physical probing (see Figure 14.4). Most smartcards have no protection against
physical tampering beyond the microscopic scale of the circuit, a thin glass passivation
layer on the surface of the chip, and potting, which is typically some kind of epoxy.
Techniques for depackaging chips are well known, and discussed in detail in standard
works on semiconductor testing, such as [80]. In most cases, a few milliliters of fum-
ing nitric acid are all that’s required to dissolve the epoxy; the passivation layer is then
removed where required for probing.

Probing stations consist of microscopes with micromanipulators attached for land-
ing fine probes on the surface of the chip. They are widely used in the semiconductor
manufacturing industry for manual testing of production-line samples, and can be ob-
tained second-hand for under $10,000. They may have specialized accessories, such as
a laser to shoot holes in the chip’s passivation layer (see Figure 14.5).

Chapter 14: Physical Tamper Resistance

292

Figure 14.4 Low-cost probing station.

The usual target of a probing attack is the processor’s bus. If the bus traffic can be
recorded, this gives a trace of the program’s operation with both code and data. If the
attacker is lucky, the card designer will have computed a checksum on memory imme-
diately after reset (a recommended defense industry practice), and this operation will
immediately give him a complete listing of the card memory contents. So the attacker
will identify the bus, and expose the bus lines for probing.

The first defense used by the pay-TV card industry against attacks of this kind was
to endow each card with multiple keys and/or algorithms, and arrange things so that
only those in current use would appear on the processor bus. Whenever pirate cards
appeared on the market, a command would be issued over the air to cause the legiti-
mate card population to activate new keys or algorithms from a previously unused area
of memory. In this way, the pirates’ customers would suffer a loss of service until the
probing attack could be repeated and either new pirate cards, or updates to the existing
ones, could somehow be distributed.

Security Engineering: A Guide to Building Dependable Distributed Systems

293

Figure 14.5 The data bus of an ST16 smartcard prepared for probing by excavating eight
trenches through the passivation layer with laser shots (photo courtesy Oliver Kömmerling).

How to Hack a Smartcard (5)

The defeat for this strategy was Oliver Kömmerling’s memory linearization attack,
whereby the analyst damages the chip’s instruction decoder in such a way that instruc-
tions which change the program address other than by incrementing it—such as jumps
and calls—become inoperable [470]. One way to do this is to drop a grounded micro-
probe needle on the control line to the instruction latch, so that whatever instruction
happens to be there on power-up is executed repeatedly. The memory contents can now
be read off the bus. In fact, once some of the device’s ROM and EEPROM are under-
stood, the attacker can skip over unwanted instructions and cause the device to execute
only instructions of his choice. So with a single probing needle, he can get the card to
execute arbitrary code, and in theory could get it to output its secret key material on
the serial port. But probing the memory contents off the bus is usually more conven-
ient.

In practice, there are often several places in the instruction decoder where a
grounded needle will have the effect of preventing programmed changes in the control
flow. So even if the processor isn’t fully understood, memory linearization can often
be achieved by trial and error. Some of the more modern processors have traps that
prevent memory linearization, such as hardware access control matrices which prevent
particular areas of memory being read unless some specific sequence of commands is
presented. But such circuits can often be defeated by shooting away carefully chosen
gates using a laser or an ion beam.

Chapter 14: Physical Tamper Resistance

294

Some cards could be attacked through their test circuitry. A typical smartcard chip
has a self-test routine in ROM that is executed in the factory and allows-all the mem-
ory contents to be read and verified. After this has been done, a polysilicon fuse is
blown in the chip to stop an attacker using the same facility. All that the attacker had to
do was to find the fuse and repair it—which could involve as little as bridging it with
two probing needles [130]. Then, in some cases, the entire memory contents could be
read out over the serial port. A more careful design might put the test circuitry on the
part of the silicon that is sawn away when the wafer is diced into individual chips.

How to Hack a Smartcard (6)

The next thing the pay-TV card industry tried was to incorporate hardware crypto-
graphic processors, to force attackers to reconstruct hardware circuits rather than sim-
ply clone software, and to force them to use more expensive processors in their pirate
cards. In the first such implementation, the crypto processor was a separate chip pack-
aged into the card. This design had an interesting protocol failure: it would always
work out the key needed to decrypt the current video stream, then pass it to the CPU,
which would decide whether or not to release it to the outside world. Hackers broke
this system by developing a way to tap into the wiring between the two chips.

More modern implementations have the crypto hardware built into the CPU itself.
Where this consists of just a few thousand gates, it is feasible for an attacker to recon-
struct the circuit manually from micrographs of the chip. But with larger gate counts
and deep submicron processes, a successful attack may require automatic layout recon-
struction: successively etching away the layers of the chip, taking electron micro-
graphs, and using image processing software to reconstruct a 3-D map of the chip, or at
least identify its component cells [121]. However, assembling all the equipment, writ-
ing the software, and integrating the systems involves significant effort and expense.

A much simpler, and common, attack is for pirates to ask one of the dozen or so ex-
isting commercial reverse-engineering labs to reconstruct the relevant area of the chip.
Such labs get much of their business from analyzing commercial integrated circuits on
behalf of the chip maker’s competitors, looking for possible patent infringements. They
are used to operating in conditions of some secrecy, and it doesn’t seem to be too diffi-
cult for a pirate to sneak in a sample that is targeted for piracy rather than litigation.

How to Hack a Smartcard (7)

The next defense that the card industry thought up was to furnish the chip with protec-
tive surface mesh, implemented in a top metal layer as a serpentine pattern of ground,
power and sensor lines. The idea was that any break or short in the pattern would be
sensed as soon as the chip was powered up, thereby triggering a self-destruct mecha-
nism.

I mentioned such meshes in connection with the Dallas processors; after the usual
initial crop of implementation blunders, they have proved to be an effective way of
pushing up the cost of an attack. The appropriate tool to defeat them is the Focused Ion
Beam Workstation (FIB). This is a device similar to a scanning electron microscope,
but it uses a beam of ions instead of electrons. By varying the beam current, it is possi-
ble to use it as a microscope or as a milling machine. By introducing a suitable gas,
which is broken down by the ion beam, it is possible to lay down either conductors or
insulators with a precision of a few tens of nanometers.

Security Engineering: A Guide to Building Dependable Distributed Systems

295

FIBs are such extremely useful devices in all sorts of applications—from semicon-
ductor testing through metallurgy and forensics to nanotechnology—that they are rap-
idly becoming widely available, and their prices are tumbling. Many universities and
industrial labs now have one. FIB time can also be rented from a number of agencies
for a few hundred dollars an hour.

Given a FIB, it is straightforward to attack a sensor mesh that is not powered up.
One simply drills a hole through the mesh to the metal line that carries the desired sig-
nal, fills it up with insulator, drills another hole through the center of the insulator, fills
it with metal, and plates a contact on top—typically, a platinum L or X a few microns
wide, which is easy to contact with a needle from the probing station (see Figure 14.6).

Defeating a sensor mesh that is continually powered up is much harder, but the nec-
essary tools are starting to emerge from the labs of the chip-testing industry. For ex-
ample, there are techniques to mill through the back side of a chip with a suitably
equipped FIB, and make contact directly to the electronics without disturbing the sen-
sor mesh at all.

Figure 14.6 The protective mesh of an ST16 smartcard with a FIB cross for probing the bus
line visible underneath (photo courtesy Oliver Kömmerling).

Many other defensive techniques can force the attacker to do more work. Some chips
are said to be packaged in much thicker glass than in a normal passivation layer. The
idea is that the obvious ways of removing this (such as applying hydrofluoric acid) are
likely to damage the chip. However, optoelectronic techniques developed in the past
few years enable an attacker to read out a voltage directly using a laser [11]. Other
chips have protective coatings of substances such as silicon carbide or boron nitride.
(Chips with protective coatings are on display at the NSA Museum at Fort Meade,

Chapter 14: Physical Tamper Resistance

296

Maryland). Such coatings can force the FIB operator to go slowly, rather than damage
the chip through a build-up of electrical charge. However, protective layers in smart-
card chip packaging are, like much else in the security industry, often a matter of mar-
keting rather than engineering. The one chip that our team has dismantled recently and
whose vendors claimed to have such a layer, turned out to have no special protection at
all.

14.6.3 The State of the Art

At the time of writing, I know of no technology, or combination of technologies, that
can make a smartcard resistant to penetration by a skilled and determined attacker.
Some industry experts even believe that absolute protection in chip-sized packages will
remain infeasible, because it’s not economic to fabricate devices that you can’t test.

Despite this, smartcards are certainly a lot harder to copy than magnetic stripe cards,
and there is room for them to be made harder still. The latest cards have up to three
layers of defensive mesh; registers that use dynamic logic, making it impossible to just
shoot away a low clock frequency detector, then single-step the chip; circuits that in-
sert dummy instructions from time to time so that if you probe the bus lines one after
another, you may have to do a lot of work to align the traces you get; 32-bit processors,
which make trace alignment even harder; proprietary instruction sets; and a whole host
of other tricks. But as industry insiders say, ‘the man with the ion beam will always get
in’.

So what sort of strategies are available to you if you are designing a system that de-
pends on smartcards?

14.6.3.1 Defense in Depth

The first, used by pay-TV companies, is defense in depth. Smartcards may combine a
whole menagerie of the tricks described above, and even obscure proprietary encryp-
tion algorithms. Normally, using home-brewed encryption schemes is a bad thing:
Kerckhoffs’ principle almost always wins in the end, and a bad scheme, once pub-
lished, can be fatal. Defense in depth of pay-TV provides an interesting exception. The
goal is to minimize, insofar as possible, the likelihood of a shortcut probing attack, and
to force the attacker to go to the trouble of reverse engineering substantially the whole
system.

It’s prudent to assume that even an amateur will be able to drop a probe on to a
number of signal lines in the device. If it is performing a known cryptographic protocol
with well-understood algorithms, then unless there’s an effective mechanism to intro-
duce lots of dummy instructions, a trace from a single bus line is likely to give away
the key [370]. Using a proprietary (and complicated) encryption algorithm can force
the attacker to do a more complete analysis and delay him for a few weeks or months.
This can make a huge difference to the economics of piracy in an industry such as pay-
TV where cards are replaced about once a year. (Of course it’s even more essential
with a proprietary design to have it evaluated thoroughly by competent experts—and
for the experts to analyze not just the abstract cryptographic strength of the algorithm,
but how easily it can be reconstructed from observable signals.)

Technical measures on their own are not enough, though. Over the last few years of
the twentieth century, the pay-TV industry managed to reduce piracy losses from over
5% of revenue to an almost negligible proportion. More complex smartcards played a

Security Engineering: A Guide to Building Dependable Distributed Systems

297

role, but much of the improvement came from legal action against pirates, and from
making technical and legal measures work together efficiently. I’ll discuss this further
in Chapter 20, when we explore the world of copyright.

14.6.3.2 Tamper Resistance versus Tamper Evidence

It can often be very useful to draw a careful distinction between devices that are tam-
per-resistant and those that are merely tamper-evident. Even if the former can’t yet be
produced for mass markets, it is more or less within our grasp to make smartcards
against which the only attacks are invasive, such as probing, and therefore leave physi-
cal evidence behind. (This is still harder than it looks—in the next chapter we’ll dis-
cuss noninvasive attacks.)

For example, in a banking application where smartcards are used to manufacture and
verify electronic checks, the bank might have a rule that disputes will be considered
only if customers can produce their smartcard undamaged. This is not quite as simple
as it seems, as smartcards can always be damaged by accident. Maybe 1% of smart-
cards issued to the public will be destroyed every year by material failures or static
electricity; consumer laws in many countries may prevent banks from disregarding
claims when that happens. Once again, the legal and engineering aspects of the prob-
lem interact. Nonetheless, cards that are tamper-evident (as well as being fairly diffi-
cult to probe) can be a useful part of a risk management strategy.

14.6.3.3 Stop Loss

Whether one goes for the defense-in-depth approach or the tamper-evident approach
will depend on the extent to which one can limit the losses that result from a single
card being successfully probed.

In early pay-TV systems, the system architecture forced all customer cards to con-
tain the same master secret. Once this secret became known, pirate cards could be
manufactured at will, and the card base had to be replaced. The pay-TV systems cur-
rently being deployed for digital broadcasting use crypto protocols in which cards have
different keys, so that cloned cards can be revoked. I’ll describe these protocols in
Section 20.2.4.5.

In other systems, such as the banking card application described in Section 2.7.1,
there are limits on the amount that can be spent using a stolen or forged card, set by a
system of merchant floor limits, random online authorizations, lists of hot cards and so
on. Here, a tamper-evident card may be a perfectly adequate solution. Even a card
that’s relatively easy to forge may be viable, as it’s still harder to forge than the mag-
netic stripe card it replaces.

Chapter 14: Physical Tamper Resistance

298

14.7 What Goes Wrong

There are failure modes of systems involving tamper-resistant processors that are more
or less independent of whether the device is low or high end. Many failures occurred
because the device was exposed to more capable attackers than its designers antici-
pated: it just never seems to have occurred to the designers of early chip cards that bad
people might have access to semiconductor test equipment. Many more occur because
people protect the wrong things, or protect the right things in the wrong way; a survey
of flaws found by a commercial evaluation laboratory showed that most of them were
at the interfaces between physical, logical, and organizational measures [131].

14.7.1 Protecting the Wrong Things: Architectural Errors

A good example of misuse of the technology is the drive to have smartcards adopted as
the preferred device for digital signatures. Some government initiatives give enhanced
legal validity to signatures made using an approved smartcard. While this may be a
Full Employment Act for the card industry, it makes little sense technically.

None of the devices described in the preceding sections has a really trustworthy user
interface. Some of the bank security modules have a physical lock (or two) on the front
to ensure that only the person with the metal key can perform certain privileged trans-
actions. But whether you use a $2,000 4758 or a $2 smartcard to do digital signatures,
you still trust the PC that drives them. If it shows you a text reading “Please pay ama-
zon.com $37.99 for a copy of Anderson’s Security Engineering,” while the message it
actually sends for signature is “Please remortgage my house at 13 Acacia Avenue and
pay the proceeds to Mafia Real Estate Inc.,” then the tamper resistance has not bought
you much.

It may even make your situation worse, as you will have a harder time repudiating
the transaction. Information policy experts have pointed out that the proposed approach
to digital signatures is likely to undermine the very consumer protection laws that give
people confidence when conducting business electronically over the Net [124]. What
customers really need is a secure PC—or at least a firewall to shield their PC from the
worst of the external threats, such as malicious code. That is a separate engineering
problem, and has little to do with hardware security. In fact, researchers are coming to
realize that a palmtop computer may be a much better platform for digital signature
applications; whatever its vulnerability to probing, customers can at least see what
they’re signing and protect the device using common sense [69].

An example of more appropriate use of hardware protection technology comes from
the prepayment electricity metering system, discussed in Chapter 11. There, the func-
tion of tamper resistance was to limit the loss if one of the vending machines that sold
meter tokens was stolen. By keeping the keys needed to encrypt the tokens in a secure
processor, which also contained a value counter, it was possible to enforce a credit
limit on each vendor. Had someone managed to drill into the device, he would have
been able to defeat the value counter, extract the crypto keys for the individual meters,
and thus sell unlimited numbers of tokens to the meters in the vending area. But this
would not have destroyed the whole metering system, just forced the rekeying of a few
thousand meters.

Security Engineering: A Guide to Building Dependable Distributed Systems

299

14.7.2 Protecting the Wrong Things: Security-by-Obscurity
and Evaluation Errors

Many of the smartcard systems that have been broken, in ways that resulted in real
frauds, appear to have become vulnerable because their operators did not fully under-
stand the technology and its limitations. This is hardly surprising; until recently, no
published information was readily available on how smartcards could be attacked. The
industry also sought to keep all serious technical information about its products secret.
To this day, one has to sign a nondisclosure agreement to get proper software devel-
opment tools for smartcards. (There are Java cards, Basic cards, and so on, but these
use interpreted languages to shield the developer from the hardware and don’t support
users who want to run their own machine code on the device).

In fact, the security target used for evaluating smartcards under the Common Criteria
focuses on maintaining obscurity of the design. Chip masks must be secret, staff must
be vetted, developers must sign nondisclosure agreements—there are many require-
ments that push up industry’s costs. Obscurity is also a common requirement for export
approval, and there remains a suspicion that it covers up deliberately inserted vulner-
abilities. For example, a card my colleagues tested would always produce the same
value when instructed to generate a private/public keypair, and output the public part.

Obscurity certainly does little for the customer in most smartcard applications. Al-
most none of the actual attacks on fielded smartcard systems used inside information.
Most of them started out with a probing attack on a card bought at retail.

Better protection targets were published by VISA, which specify extensive penetra-
tion testing [777]. However, as no existing products can pass such a test, the industry
took the route of protecting what it could rather than what it should. I’ll return to this
subject to discuss the underlying economics and politics in Section 23.3.3.1.

14.7.3 Protecting Things Wrongly: Protocol Failure

As elsewhere in security engineering, one of the most pervasive kinds of failure at the
technical level is the use of inappropriate protocols. A device such as the 4758 comes
with a transaction set of several hundred “verbs,” or combinations of cryptographic
operations that can be carried out on data passed to the device. Further verbs can be
defined by the application developer. How can one be sure that some combination of
these verbs won’t enable a user to do something that breaks the security policy?

From about 1981 until 1991, there was a protocol attack that worked against many
of the security modules used by banks to manage ATM networks. As the working life
of a security module is about seven years, the defective devices should all have retired
by the time this book appears (but they completely destroy the claim made by many
banks in the course of phantom withdrawal litigation in the early 1990s that “nothing
could possibly go wrong”).

The security modules provided by VISA and VISA-compatible vendors such as Ra-
cal had a transaction to generate a key component and print out its clear value on an
attached security printer.

Chapter 14: Physical Tamper Resistance

300

They also returned its value to the calling program, encrypted under a master key
KM which was kept in the tamper-resistant hardware:

 VSM Æ printer: KMTi

VSM Æ host: {KMTi}KM

and another that combined two of the components to produce a terminal key:

Host Æ VSM: {KMT1}KM, {KMT2}KM

 VSM Æ host: {KMT1 ⊕ KMT2}KM

The idea was that, to generate a terminal key for the first time, you’d use the first of
these transactions twice, followed by the second. Then you’d have KMT = KMT1 ⊕
KMT2. However, there is nothing to stop the programmer taking any old encrypted key
and supplying it twice in the second transaction, resulting in a known terminal key (the
key of all zeroes, as the key is exclusive-or’ed with itself):

Host Æ VSM: {KMT1}KM, {KMT1}KM

 VSM Æ host: {KMT1 ⊕ KMT1}KM

The module also has a transaction that will take two keys, encrypted under the mas-
ter key and return one encrypted with the other

Host Æ VSM: {KMT1}KM, {KMT2}KM

 VSM Æ host: {KMT1}KMT2

(This is intended to allow the terminal master key in a cash machine to be replaced, or
a PIN key to be sent to a cash machine encrypted under the terminal master key, to
support offline PIN verification.)

The attack is now simple, and devastating. Having a zero key, encrypted under KM,
we can translate the PIN key (and everything else of interest) from being encrypted
under KM to being encrypted under the zero key. Thus, the physical protection that was
promised to customers was a phantasm: a programmer could extract any key of interest
with only two unprivileged instructions.

This is interesting from the scientific point of view, because the security policy en-
forced by the VSM is a kind of kludge between a multilevel policy (“PINs are Secret
and must not leak to any process with a lower classification”) and a shared control
policy (“no single member of bank staff should be able to work out a customer PIN”).
It’s also interesting from the public policy viewpoint, as it was known to the equipment
vendors at the time of the Munden case described in Section 9.4.3. But the vendors
didn’t own up to it, despite the fact that its existence would have directly undermined
the prosecution testimony in a highly publicized miscarriage-of-justice case. This
should be remembered whenever one of the parties in a court case relies on vendor as-
surances about a system’s capabilities.

The fix adopted was to remove the offending instruction. This means that dual con-
trol key management now involves a trusted process at the host, which will have access
to key material. (This has always been the case with the ATM support application,
CCA, supplied for the 4758.) A better fix would have been to compute terminal keys

Security Engineering: A Guide to Building Dependable Distributed Systems

301

using a hash function, such as KMT = SHA1(KMT1,KMT2), but this would not have
been backward-compatible. With hindsight, the choice of a combining function with
arithmetic properties meant that all the protocols subsequently developed on this foun-
dation should have been checked for ways in which these properties could misbehave.
In other words, the choice of combining function raised the complexity of transaction
set verification.

This brings us to the attack found on the 4758 by Mike Bond. This enables any key
to be extracted from the device with only a modest keysearch. The vulnerability is that
the two-key, triple-DES encryption used internally by the 4758 can have its key pairs
cut and spliced. Given a known pair of keys, KA and KB, and a target pair of keys KC
and KD, one can compare the results of encryption under the spliced keys (KC,KB) and
(KA,KD) with a brute-force search of all possibilities, thus breaking the target keys one
component at a time. This reduces the cost of an attack from the 2112 of a standard tri-
ple-DES keysearch to the more tractable 256 of single-DES. There is also a time-
memory tradeoff available; for example, with 216 trial keys it is possible to break the
4758 with an effort of about 240 test encryptions. For full details, see [125].

Let’s step back for a minute and consider the implications. IBM spent over a decade
evolving a highly strategic product, that is used by many banks to protect zillions of
dollars’ worth of transactions. The US government certified it as the most secure
crypto processor available to civilian purchasers, and kept it export-controlled. IBM
further protected it by refusing to sell us a sample. Yet a typical Cambridge graduate
student broke it within six weeks by studying the manuals available from IBM’s Web
site.

Verifying the correctness of the transaction set of a cryptographic processor is a
hard, and as yet unsolved, problem. Verifying an individual protocol is difficult
enough, and the research community spent much the 1990s learning how to do it. Yet a
protocol might consist of perhaps two to five messages, while a cryptoprocessor might
have from dozens to hundreds of verbs. Many protocols fail because their goals are not
made sufficiently explicit; yet cryptoprocessors are sold as general-purpose machines,
and may be used to enforce a very wide range of security policies. We don’t yet really
know how to formalize security policies, let alone track them back to crypto primi-
tives. Checking that there isn’t some obscure sequence of transactions that breaks your
security policy is hard enough; when your policy isn’t even precisely stated, it looks
impossible.

14.7.4 Function Creep

I’ve given numerous examples of how function creep, and changes in environmental
conditions in general, have broken many secure systems by undermining their design
assumptions. The flexibility of some modern cryptographic processors makes this a
particular problem.

Function creep can also interact with physical tamper-resistance directly, and is par-
ticularly pernicious in smartcard applications. It is easy to move subtly from a system
in which smartcards act much like magnetic strip cards and perform transactions on
underlying bank accounts that are cleared every night, to a system in which they act
like wallets and can transfer value to each other. In the former, cards can have different
keys shared only with the bank, and so the compromise of a single card need mean no
more than the cloning of a credit card does in the magnetic strip world. In the latter,
each card has a key that enables it to transfer money to any other card, and the con-

Chapter 14: Physical Tamper Resistance

302

straints of centralized accounting are relaxed. A relatively low-risk environment sud-
denly becomes a relatively high-risk one.

Another way a low-risk environment can become a high-risk one is when multiple
applications are put on the same card. If a device that was previously just a health in-
surance card or a welfare claimants’ card suddenly starts to double as a national iden-
tity card, then it may attract a much higher grade of attacker. If large numbers of
different organizations can run their own applications on the card—which is the stated
purpose of Java cards—then the chosen protocol attack described in Chapter 2 be-
comes a particularly dangerous threat. A bad man may design an application specifi-
cally to attack yours.

14.8 What Should Be Protected?

With many technologies—including the steam engine, telephone, and computer—the
original proposed use of the device was not that which eventually took off in the mar-
ket. (Consider the size of the market today for pumping water out of coal mines; read-
ing text to telegraph operators rather than sending it through a pneumatic tube; and
working out artillery range tables.)

The currently fashionable sales pitch for smartcards is that they will be the advanced
electronic signature devices envisaged in EU electronic commerce regulations—that is,
devices that people will use to sign legal documents and that will be sufficiently de-
pendable that the existence of such a signature can be taken as proof that the owner of
the device signed it. Quite apart from the obvious legal objections (that it shifts the
burden of proof from the party relying on the signature to the device owner, and that
devices can always be stolen), there is, as I mentioned earlier, the technical problem
that the user doesn’t know what the smartcard is signing; and if the PC software, that
supplies the matter to be signed, is guaranteed to be bug-free and free from viruses,
then what value does the smartcard add?

The industry has been trying for much of the 1990s to sell the idea of a multifunc-
tion card, which would replace many of the plastic cards and metal keys that the aver-
age person carries with them. The application that makes this finally happen may be
putting bank transaction processing into mobile phones. As mobile phones have slots
for precisely one smartcard, a bank would have to rent space on the card from the
phone network operator. We shall see.

So what value can tamper-resistant devices actually add?
First, they can control information processing by linking it to a single physical to-

ken. A pay-TV subscriber card can be bought and sold in a gray market, but as long as
it isn’t copied, the station operator isn’t too concerned. Another example comes from a
Dallas product used in quality control in the food industry: it is physically sealed into a
food shipment to provide a reliable log of temperature history. Yet another is the use of
crypto to enforce evaluation standards in government networks: if you only get key
material once your system has been inspected and accredited, then it’s inconvenient to
connect an unlicensed system of any size to the classified government network.

Second, tamper-resistant devices can give assurance that data are destroyed at a
definite and verifiable time. The anti-trust case against Microsoft has highlighted the
damage that can be done by the seizure under subpoena of email archives; many corpo-
rations would like to enforce a policy that every email be destroyed after a fixed time,

Security Engineering: A Guide to Building Dependable Distributed Systems

303

unless either the sender or the recipient takes positive action to preserve it. At my uni-
versity, for example, we destroy exam scripts and examiners’ working notes after four
months. If we held on to them for too long, we would have to give the students access
under data protection law, but if we destroyed them too soon, we could prejudice an
appeal. Once everything is electronic, implementing such a policy will be complicated
by all the system backups we keep. A solution is to encrypt archives with keys kept in
a device that is programmed to erase them at the right time.

Third, these devices can reduce the need to trust human operators. As I remarked,
their main purpose in some government systems was “reducing the street value of key
material to zero”. A crypto ignition key for a STU-III should allow a thief only to mas-
querade as the rightful owner, and only if he has access to an actual STU-III telephone,
and only as long as neither the key nor the phone have been reported stolen. The same
general considerations applied in ATM networks: no bank wanted to make its own
customers’ security depend on the trustworthiness of the staff of another bank.

Fourth, tamper-resistant devices can be used to control value counters, as with the
prepayment electricity discussed in Section 14.7.1. These typically use devices such as
the DS5002 or the iButton to hold both the vend keys for local meters and a credit
counter. Even if the device is stolen, the total value of electricity tokens it can vend is
limited.

This seems to be a special case of a more general application, in which some part of
a central server’s processing is delegated to a device in the field. But the most compel-
ling examples I can think of concern value. Note that a guarded corporate data-
processing center is also a tamper-resistant processor; applications of this type can of-
ten be spotted by the fact that they could also be implemented centrally if a completely
reliable network existed. For example, if all electricity meters and vend stations were
online, then prepayment metering could be done using straightforward authenticated
messaging. Note, too, that delegation also occurs between corporate data processing
centers, as when banks use hot-card lists to authenticate card transactions on other
banks. Here, tamper-resistant devices may be used to provide extra assurance (though
often logging mechanisms are sufficient where the continued solvency of the principals
can be relied on).

This is an incomplete list. But what these applications have in common is that a se-
curity property can be provided independently of the trustworthiness of the surround-
ing computer environment. In other words, be careful when using tamper-resistant
devices to try to offset the lack of a trustworthy user interface. This doesn’t mean that
no value at all can be added where the interface is problematic. For example, the tam-
per-resistant crypto modules used in ATM networks cannot prevent small-scale theft
using bogus ATMs; but they can prevent large-scale PIN compromise if used properly.
In general, tamper-resistant devices are often a useful component, but only very rarely
provide a fully engineered solution.

Finally, it is worth noting that tamper-resistance provides little protection against le-
gal attack. If you rely on it to keep algorithms proprietary, your competitors can bring
a patent infringement suit (however frivolous) simply to force disclosure of your de-
sign. This actually happens!

Chapter 14: Physical Tamper Resistance

304

14.9 Summary

Tamper-resistant devices and systems have a long history, and predate the development
of electronic computing. Computers can be protected against physical tampering in a
number of ways, such as by keeping them locked up in a guarded room. There are also
several cheaper and more portable options.

This chapter looked at a number of them, from devices costing thousands of dollars
that are certified by the U.S. government to resist all currently known attacks, down to
smartcards that can be penetrated by an attacker with a few thousand dollars’ worth of
equipment with a few weeks’ work. I discussed a number of applications, and a num-
ber of failures. Very often, the failures are not the fault of the hardware barriers or
alarms themselves, but a result of using the technology in an inappropriate way.

Research Problems

There are basically three strands of research in tamper-resistant processor design. The
first concerns itself with making faster, better, cheaper processors: how can the protec-
tion offered by a high-end device be brought to products with midrange prices and
sizes, and how can midrange protection can be brought to smartcards? The second con-
cerns itself with pushing forward the state of the attack art. How can the latest chip-
testing technologies be used to make faster, better, cheaper attacks?

The third strand concerns itself with the logical aspects of protection. Even assum-
ing that you can put a perfectly impenetrable barrier around a processor—imagine, for
example, a processor in orbit around Mars—how do you design the transaction set (and
the surrounding application) so that it can do useful work, with a high level of assur-
ance that some simple attack won’t be found?

Further Reading

For the early history of crypto, including things like weighted code books and water-
soluble inks, the source is, of course, Kahn [428]. The IBM and Dallas products men-
tioned have extensive documentation available online [397]; the U.S. FIPS documents
are also online [576]. For an introduction to chip card technology, see [632]; and for
the gory details of tampering attacks on chip cards, see [43, 44, 470]. Noninvasive at-
tacks on security processors, such as power analysis, are discussed in the next chapter.

