DNS refresher

Overview

- Goal of this session
- What is DNS ?
- How is DNS built and how does it work?
- How does a query work ?
- Record types
- Caching and Authoritative
- Delegation: domains vs zones
- Finding the error: where is it broken?

Goal of this session

- We will review the basics of DNS, including query mechanisms, delegation, and caching.
- The aim is to be able to understand enough of DNS to be able to configure a caching DNS server, and troubleshoot common DNS problems, both local and remote (on the Internet)

What is DNS?

System to convert names to IP addresses:

```
nsrc.org \rightarrow 128.223.157.19
www.afrinic.net \rightarrow 2001:42d0::200:80:1
```

• ... and back:

What is DNS?

- Other information can be found in DNS:
 - where to send mail for a domain
 - who is responsible for this system
 - geographical information
 - etc...

• How do we look this information up ?

Basic DNS tools

Using the host command:

```
# host nsrc.org.
nsrc.org. has address 128.223.157.19
# host 128.223.157.19
```

19.157.223.128.in-addr.arpa domain name pointer nsrc.org.

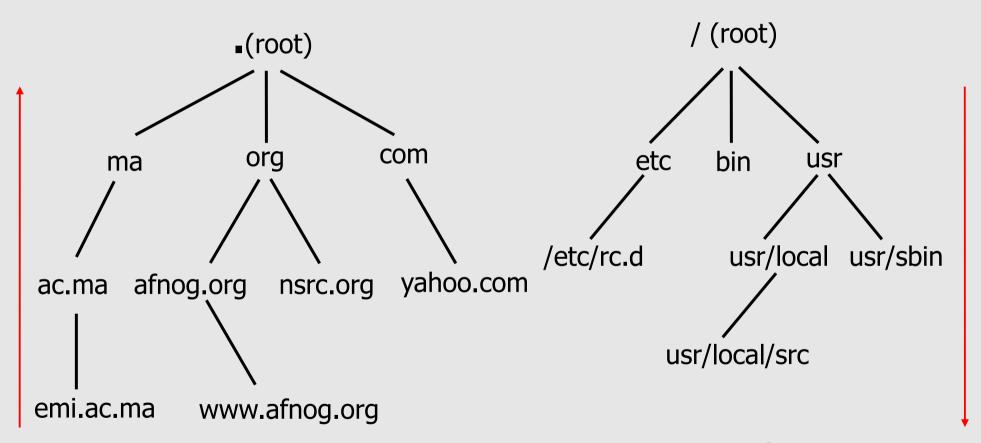
Basic DNS tools

Host with IPv6:

host www.afrinic.net

pointer www.afrinic.net.

0.0.0.0.d.2.4.1.0.0.2.ip6.arpa domain name


Basic DNS tools

Try this yourself with other names —
 first lookup the names below, then do the
 same for the IP address returned:

```
www.yahoo.com
www.nsrc.org
ipv6.google.com
```

- Does the lookup of the IP match the name ? Why ?
- Where did the 'host' command find the information ?

How is DNS built?

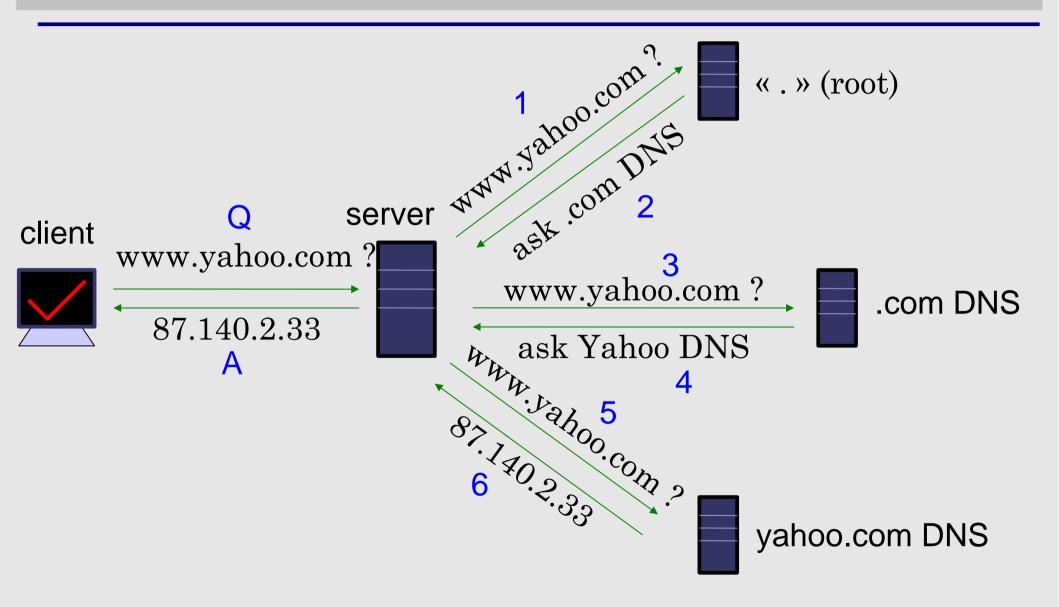
DNS Database

Unix Filesystem

... forms a tree structure

How is DNS built?

- DNS is hierarchical
- DNS administration is shared no single central entity administrates all DNS data
- This distribution of the administration is called delegation


How does DNS work?

- Clients use a mechanism called a resolver and ask servers — this is called a query
- The server being queried will try to find the answer on behalf of the client
- The server functions recursively, from top (the root) to bottom, until it finds the answer, asking other servers along the way - the server is referred to other servers

How does DNS work?

- The client (web browser, mail program, ...) use the OS's resolver to find the IP address.
- For example, if we go to the webpage www.yahoo.com:
 - the web browser asks the OS « I need the IP for www.yahoo.com »
 - the OS looks in the resolver configuration which server to ask, and sends the query
- On UNIX, /etc/resolv.conf is where the resolver is configured.

A DNS query

Query detail with tcpdump

• On the server, become root:

```
$ sudo -s
passwd:
# tcpdump -s1500 -n port 53
```

In another window/screen do:

```
# host ... (whatever you like)
```

Query detail – example output

```
• 1: 18:40:38.62 TP 192.168.1.1.57811 > 192.112.36.4.53:
  29030 [lau] A? hl-web.hosting.catpipe.net. (55)
• 2: 18:40:39.24 IP 192.112.36.4.53 > 192.168.1.1.57811:
  29030- 0/13/16 (540)
• 3: 18:40:39.24 IP 192.168.1.1.57811 > 192.43.172.30.53:
  7286 [lau] A? hl-web.hosting.catpipe.net. (55)
• 4: 18:40:39.93 IP 192.43.172.30.53 > 192.168.1.1.57811:
  7286 \text{ FormErr-} [0q] 0/0/0 (12)
• 5: 18:40:39.93 IP 192.168.1.1.57811 > 192.43.172.30.53:
  50994 A? h1-web.hosting.catpipe.net. (44)
• 6: 18:40:40.60 IP 192.43.172.30.53 > 192.168.1.1.57811:
  50994- 0/3/3 (152)
• 7: 18:40:40.60 IP 192.168.1.1.57811 > 83.221.131.7.53:
  58265 [lau] A? hl-web.hosting.catpipe.net. (55)
• 8: 18:40:41.26 IP 83.221.131.7.53 > 192.168.1.1.57811:
  58265* 1/2/3 A 83.221.131.6 (139)
```

Query detail - analysis

 We use a packet analyzer (wireshark) to view the contents of the query... http://www.wireshark.org/

<u>F</u> ile	<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> o <u>C</u> apture <u>A</u> nalyze <u>S</u> tatistics Telephony <u>T</u> ools <u>H</u> elp															
															•	
▼ Filter: ▼ Lxpression Clear Apply																
No.	. Time			So	urce		Destin	ation	Proto	col	Info					À
	1 0.00000	0		69.	4.231	. 52	10.10.	2.171	HTTP	(Continu	ation	or non	-HTTP t	raffic	U
	2 0.00047	7		10.	10.2.	171	69.4.2	31.52	TCP	4	43076 >	http	[ACK]	Seq=1 A	\ck=429	
	3 0.02660	5		Oli	.com_c	b: 4f	Broadc	ast	ARP	١	Who has	10.10	9.2.168	? Tell	10.10	3
	4 0.07346	3		Net	gear_	97:7	Spanni	ng-tree	- (fc STP	(Conf. R	oot =	32768/	0/00:01	: b5:97	1
	5 0.07480	0					Broadc		ARP	١	Who has	10.10	9.2.168	? Tell	10.10	1
	6 0.20601	1		Oli	com_c	b: 4f	Broadc	ast	ARP	١	Who has	10.10	9.2.168	? Tell	10.10	1
	7 0.20706	5		10.	10.2.	178	10.10.	2.255	NBNS	1	Name qu	ery NE	3 WVLKA	.0<1c>		
	8 0.21469	0		fe8	80::8d	4a:d∙	ff02::	1:2	DHCPv	/6	Solicit					
	9 0.22423	2		10.	10.2.	180	239.25	5.255.2	50 SSDP	- 1	M-SEARC	H * H	TTP/1.1			
	10 0.29065	2		69.	4.231	. 52	10.10.	2.171	HTTP		[TCP Re	transı	nission] Conti	nuatio	
	11 0.29109	5		10.	10.2.	171	69.4.2	31.52	TCP		43076 >	http	[ACK]	Seq=1 A	\ck=144	Ų
	12 0 44405	n.		10	10 2	166	192 24	R R 97	DNS	(Standar	d due	rv Ats	client	dns	Ť
4)+	
▶ Frame 1 (1514 bytes on wire, 1500 bytes captured)																
<pre>▶ Ethernet II, Src: Olicom_cb:4f:a2 (00:00:24:cb:4f:a2), Dst: HewlettP_8c:91:8b (00:1a:4b:8c:91:8b)</pre>																
▶ Internet Protocol, Src: 69.4.231.52 (69.4.231.52), Dst: 10.10.2.171 (10.10.2.171)																
_																
	ansmission			ol, Src	Port:	http	(80),	Dst Por	t: 43076	(430	76), Se	q: 1,	Ack: 1	., Len:	1448	
▶ Hy	pertext Tra	ansfer P	rotocol													
[P	acket size	limited	during	capture	: HTTF	trur	ncated]									
_				· .												
0000	00 la 4b 8			24 cb 4					\$.0.							
0010	05 dc 78 d								@.+E							
0020	02 ab 00 5								Di							
0030	00 0e 45 1															
0040	c2 39 86 (\$;^							-
0050	d3 7a 51 l	na 8T 53	∠a d9	aa c1 8	T 13 2	27 bd	93 /4	. 20	S*	· m. T						

Resolver configuration

- So how does your computer know which server to ask to get answers to DNS queries ?
- On UNIX, look in /etc/resolv.conf
- Look now in the file, and verify that you have a 'nameserver' statement of the form:

```
nameserver a.b.c.d
```

or

```
nameserver ip:v6:ad:dr:es:ss
... where a.b.c.d is the IP/IPv6 of a functioning DNS server (it should).
```

Finding the root...

• The first query is directed to:

```
192.112.36.4 (G.ROOT-SERVERS.NET.)
```

- How does the server know where to reach the root servers ?
- Chicken-and-egg problem
- Each namerserver has a list of the root nameservers (A — M.ROOT-SERVERS.NET) and their IP address
- In BIND, named.root

Using 'dig' to get more details

- the 'host' command is limited in its output — good for lookups, but not enough for debugging.
- we use the 'dig' command to obtain more details
- dig shows a lot of interesting stuff...

Using 'dig' to get more details

```
ns# dig @147.28.0.39 www.nsrc.org. a
: <<>> DiG 9.3.2 <<>> @147.28.0.39 www.nsrc.org
; (1 server found)
;; global options:
                   printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4620
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 4,
ADDITIONAL: 2
;; OUESTION SECTION:
; www.nsrc.org.
                                 TN
                                         Α
;; ANSWER SECTION:
                                                  128, 223, 162, 29
www.nsrc.org.
                        14400
                                 TN
                                         Α
;; AUTHORITY SECTION:
                         14400
                                                  rip.psq.com.
                                 TN
                                         NS
nsrc.orq.
                         14400
                                         NS
                                                  arizona.edu.
nsrc.org.
                                 TN
;; ADDITIONAL SECTION:
                                                  147.28.0.39
                         77044
rip.psq.com.
                                 TN
                                         Α
                                                  128.196.128.233
arizona.edu.
                         2301
                                 TN
;; Query time: 708 msec
;; SERVER: 147.28.0.39#53(147.28.0.39)
;; WHEN: Wed May 10 15:05:55 2007
:: MSG SIZE rcvd: 128
```

```
noc# dig www.afrinic.net any
; <>>> DiG 9.4.2 <<>> any www.afrinic.net
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36019
;; flags: gr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 6, ADDITIONAL: 10
;; QUESTION SECTION:
;www.afrinic.net.
                        TN ANY
;; ANSWER SECTION:
www.afrinic.net. 477
                                     2001:42d0::200:80:1
                        TN AAAA
                        IN A
www.afrinic.net. 65423
                                     196.216.2.1
;; AUTHORITY SECTION:
afrinic.net.
                65324
                                     secl.apnic.net.
                        IN
                           NS
                                     sec3.apnic.net.
afrinic.net.
               65324
                            NS
                        IN
afrinic.net. 65324
                                     nsl.afrinic.net.
                        IN
                            NS
afrinic.net. 65324
                                     tinnie.arin.net.
                            NS
                        ΤN
afrinic.net. 65324
                                     ns.lacnic.net.
                        IN
                            NS
afrinic.net.
            65324
                        ΤN
                            NS
                                     ns-sec.ripe.net.
;; ADDITIONAL SECTION:
ns.lacnic.net. 151715
                        IN A
                                     200.160.0.7
ns.lacnic.net.
                65315
                                     2001:12ff::7
                            AAAA
                        IN
ns-sec.ripe.net. 136865
                                     193.0.0.196
                        IN
                            Α
ns-sec.ripe.net. 136865
                        ΙN
                            AAAA
                                     2001:610:240:0:53::4
nsl.afrinic.net. 65315
                                     196.216.2.1
                        IN
                            Α
tinnie.arin.net. 151715
                        IN
                            Α
                                     168.143.101.18
secl.apnic.net. 151715
                                     202.12.29.59
                        IN
                            Α
                            AAAA
sec1.apnic.net. 151715
                        IN
                                     2001:dc0:2001:a:4608::59
sec3.apnic.net. 151715
                        IN
                            A
                                     202.12.28.140
sec3.apnic.net. 151715
                        IN AAAA
                                     2001:dc0:1:0:4777::140
;; Query time: 1 msec
```

;; WHEN: Tue May 27 08:48:13 2008 ;; MSG SIZE rcvd: 423

;; SERVER: 196.200.218.1#53(196.200.218.1)

dig output

- Some interesting fields:
 - flags section: qr aa ra rd
 - status
 - answer section
 - authority section
 - TTL (numbers in the left column)
 - query time
 - server
- Notice the 'A' and 'AAAA' record type in the output.

Record types

Basic record types:

• A, AAAA: IPv4, IPv6 address

NS: NameServer

MX: Mail eXchanger

• CNAME: Canonical name (alias)

PTR: Reverse information

Caching vs Authoritative

- In the dig output, and in subsequent outputs, we noticed a decrease in query time if we repeated the query.
- Answers are being cached by the querying nameserver, to speed up requests and save network ressources
- The TTL value controls the time an answer can be cached
- DNS servers can be put in two categories: caching and authoritative.

Caching vs Authoritative: authoritative

- Authoritative servers typically only answer queries for data over which they have authority, i.e.: data of which they have an external copy, i.e. from disk (file or database)
- If they do not know the answer, they will point to a source of authority, but will not process the query recursively.

Caching vs Authoritative: caching

- Caching nameservers act as query forwarders on behalf of clients, and cache answers for later.
- Can be the same software (often is), but mixing functionality (recursive/caching and authoritative) is discouraged (security risks + confusing)
- The TTL of the answer is used to determine how long it may be cached without re-querying.

TTL values

- TTL values decrement and expire
- Try repeatedly asking for the A record for www.yahoo.com:

```
# dig www.yahoo.com
```

 What do you observe about the query time and the TTL ?

SOA

Let's query the SOA for a domain:

SOA

- The first two fields highlighted are:
 - the SOA (Start Of Authority), which the
 administrator sets to the name of the
 « source » server for the domain data
 (this is not always the case)
 - the RP (Responsible Person), which is the email address (with the first @ replaced by a '.') to contact in case of technical problems.

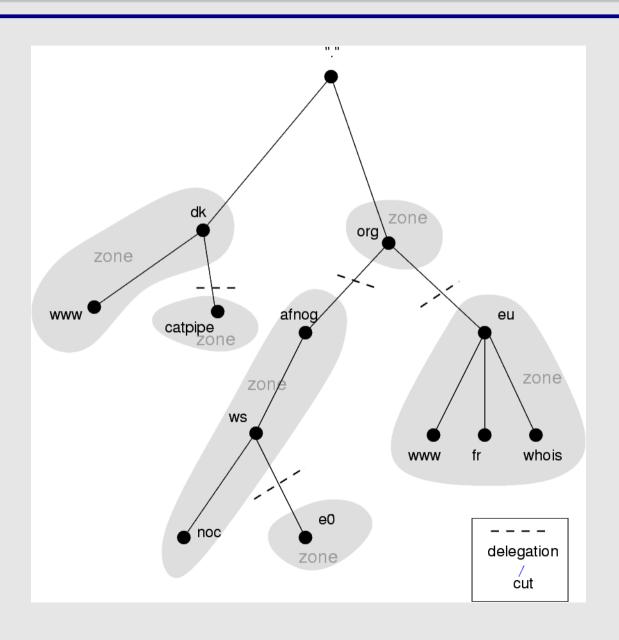
SOA

- The other fields are:
 - serial: the serial number of the zone:
 this is used for replication between two
 nameservers
 - refresh: how often a replica server should check the master to see if there is new data
 - retry: how often to retry if the master server fails to answer after refresh.
 - expire: when the master server has failed to answer for too long, stop answering clients about this data.
- Why is expire necessary ?

Running a caching nameserver

- Running a caching nameserver locally can be very useful
- Easy to setup, for example on FreeBSD:
 - add named_enable="YES" to /etc/rc.conf
 - start named:
 /etc/rc.d/named start
- What is a good test to verify that named is running ?

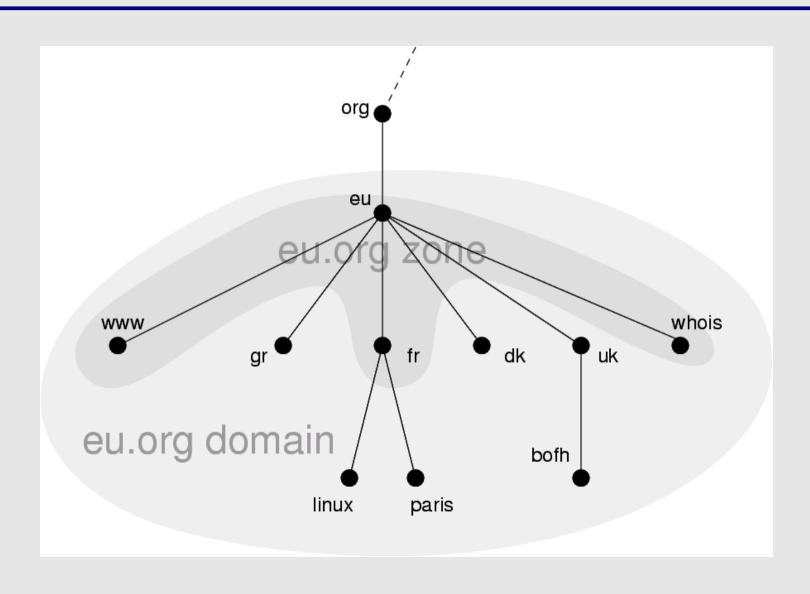
Running a caching nameserver


 When you are confident that your caching nameserver is working, enable it in your local resolver configuration (/etc/resolv.conf):

nameserver 127.0.0.1

Delegation

- We mentioned that one of the advantages of DNS was that of distribution through shared administration. This is called delegation.
- We delegate when there is an administrative boundary and we want to turn over control of a subdomain to:
 - a department of a larger organization
 - an organization in a country
 - an entity representing a country's
 domain


Delegation

Delegation: Domains vs Zones

- When we talk about the entire subtree, we talk about domains
- When we talk about part of a domain that is administered by an entity, we talk about zones

Delegation: Domains vs Zones

Finding the error: using doc

- When you encounter problems with your network, web service or email, you don't always suspect DNS.
- When you do, it's not always obvious what the problem is — DNS is tricky.
- A great tool for quickly spotting configuration problems is 'doc'
- /usr/ports/dns/doc install it now!
- Let's do a few tests on screen with doc...

Conclusion

- DNS is a vast subject
- It takes a lot of practice to pinpoint problems accurately the first time caching and recursion are especially confusing
- Remember that there are several servers for the same data, and you don't always talk to the same one
- Practice, practice, practice!
- Don't be afraid to ask questions...

Questions?

